论文标题

针对受依从性影响的个体内部研究的自适应数据收集

Adaptive data collection for intra-individual studies affected by adherence

论文作者

Monacelli, Greta, Zhang, Lili, Schlee, Winfried, Langguth, Berthold, Ward, Tomás E., Murphy, Thomas B.

论文摘要

最近,在生态瞬时评估(EMA)和干预措施(EMI)中使用移动技术使得更容易收集适用于医学领域中个体内部变异性研究的数据。但是,尤其是在数据收集过程中使用自我报告时,在平衡数据质量和对受试者的负担方面存在困难。在本文中,我们针对特定的EMA设置解决了这个问题,该设置旨在将苛刻的任务提交给自我报告变量的高/低值的受试者。我们采用受控制图方法和设计优化技术启发的动态方法,以获取数据收集的EMA触发机制,该机制考虑了自我报告变量的个体变异性和依从性率的个人变异性。我们在模拟设置和使用耳鸣纵向研究中的真实大规模数据中测试了算法。 Wilcoxon-Mann-Whitney等级总测试表明,该算法往往具有比随机时间表更高的F1分数和效用,并且具有静态阈值的基于规则的算法,这是当前最新方法。总之,该算法在平衡数据质量和对参与者的负担之间被证明有效,尤其是正如分析所做的那样,在数据收集受依从性影响的研究中。

Recently the use of mobile technologies in Ecological Momentary Assessments (EMA) and Interventions (EMI) has made it easier to collect data suitable for intra-individual variability studies in the medical field. Nevertheless, especially when self-reports are used during the data collection process, there are difficulties in balancing data quality and the burden placed on the subjects. In this paper, we address this problem for a specific EMA setting which aims to submit a demanding task to subjects at high/low values of a self-reported variable. We adopt a dynamic approach inspired by control chart methods and design optimization techniques to obtain an EMA triggering mechanism for data collection which takes into account both the individual variability of the self-reported variable and of the adherence rate. We test the algorithm in both a simulation setting and with real, large-scale data from a tinnitus longitudinal study. A Wilcoxon-Mann-Whitney Rank Sum Test shows that the algorithm tends to have both a higher F1 score and utility than a random schedule and a rule-based algorithm with static thresholds, which are the current state-of-the-art approaches. In conclusion, the algorithm is proven effective in balancing data quality and the burden placed on the participants, especially, as the analysis performed suggest, in studies where data collection is impacted by adherence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源