论文标题

使用深度学习对熔体池热场的替代建模

Surrogate Modeling of Melt Pool Thermal Field using Deep Learning

论文作者

Hemmasian, AmirPouya, Ogoke, Francis, Akbari, Parand, Malen, Jonathan, Beuth, Jack, Farimani, Amir Barati

论文摘要

在过去的十年中,基于粉末的添加剂制造业改变了制造业。在激光粉床融合中,特定部分以迭代方式建造,在该方式中,通过融化并融合粉末床的适当区域,在彼此之间形成二维横截面。在此过程中,熔体池及其热场的行为在预测制成部分的质量及其可能的缺陷方面具有非常重要的作用。但是,这种复杂现象的模拟通常非常耗时,需要大量的计算资源。 Flow-3D是能够使用迭代数值求解器执行此类仿真的软件包之一。在这项工作中,我们使用Flow-3D创建了三个单轨过程的数据集,并使用它们来训练卷积神经网络,能够仅通过将三个参数作为输入来预测熔体池的三维热场的行为:激光功率,激光速度和时间步。在预测熔体池面积时,CNN的温度场达到了相对的根平方误差为2%至3%,平均相交超过80%至90%。此外,由于将时间作为模型的输入之一包括在内,因此可以在任何任意时间步中立即获得热场,而无需迭代并计算所有步骤

Powder-based additive manufacturing has transformed the manufacturing industry over the last decade. In Laser Powder Bed Fusion, a specific part is built in an iterative manner in which two-dimensional cross-sections are formed on top of each other by melting and fusing the proper areas of the powder bed. In this process, the behavior of the melt pool and its thermal field has a very important role in predicting the quality of the manufactured part and its possible defects. However, the simulation of such a complex phenomenon is usually very time-consuming and requires huge computational resources. Flow-3D is one of the software packages capable of executing such simulations using iterative numerical solvers. In this work, we create three datasets of single-trail processes using Flow-3D and use them to train a convolutional neural network capable of predicting the behavior of the three-dimensional thermal field of the melt pool solely by taking three parameters as input: laser power, laser velocity, and time step. The CNN achieves a relative Root Mean Squared Error of 2% to 3% for the temperature field and an average Intersection over Union score of 80% to 90% in predicting the melt pool area. Moreover, since time is included as one of the inputs of the model, the thermal field can be instantly obtained for any arbitrary time step without the need to iterate and compute all the steps

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源