论文标题

从基于骨架的观察结果中学习人体运动,以进行机器人辅助治疗

Learning Human Body Motions from Skeleton-Based Observations for Robot-Assisted Therapy

论文作者

Quiroga, Natalia, Mitrevski, Alex, Plöger, Paul G.

论文摘要

在治疗方案中应用的机器人,例如,在患有自闭症谱系障碍的个体的治疗中,有时被用于模仿学习活动,其中一个人需要由机器人重复动作。为了简化合并机器人可以执行的新类型动作的任务,希望机器人能够通过观察人类(例如治疗师)的示威来学习动作。在本文中,我们研究了一种从人类的骨骼观察中获取动作的方法,该方法是由以机器人为中心的RGB-D相机收集的。给定一系列观察到各种关节,在通过PID位置控制器执行之前,将关节位置映射以匹配机器人的配置。我们通过使用Qtrobot进行一项研究来评估该方法,尤其是繁殖误差,其中机器人从多个参与者中获得了不同的上身舞蹈动作。结果表明该方法的总体可行性,但也表明繁殖质量受骨架观测中噪声的影响。

Robots applied in therapeutic scenarios, for instance in the therapy of individuals with Autism Spectrum Disorder, are sometimes used for imitation learning activities in which a person needs to repeat motions by the robot. To simplify the task of incorporating new types of motions that a robot can perform, it is desirable that the robot has the ability to learn motions by observing demonstrations from a human, such as a therapist. In this paper, we investigate an approach for acquiring motions from skeleton observations of a human, which are collected by a robot-centric RGB-D camera. Given a sequence of observations of various joints, the joint positions are mapped to match the configuration of a robot before being executed by a PID position controller. We evaluate the method, in particular the reproduction error, by performing a study with QTrobot in which the robot acquired different upper-body dance moves from multiple participants. The results indicate the method's overall feasibility, but also indicate that the reproduction quality is affected by noise in the skeleton observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源