论文标题

拉格朗日密度时空深度神经网络拓扑

Lagrangian Density Space-Time Deep Neural Network Topology

论文作者

Bishnoi, Bhupesh

论文摘要

作为基于网络的功能近似器,我们提出了“拉格朗日密度时空深神经网络”(LDDNN)拓扑。它有资格进行无监督的培训和学习,以预测基本物理科学的动态控制现象。原型网络通过给定的广义非线性偏微分方程的给定数据集简洁地描述了系统的拉格朗日和汉密尔顿密度的基本保护定律。目的是通过神经网络参数化拉格朗日密度,并通过数据直接从中学习,而不是手工制作物理系统拉格朗日密度的精确时间依赖时间的“动作解决方案”。借助这种新颖的方法,可以通过基于基于基础的物理差异操作员来构建定制的网络互连拓扑,激活以及损失/成本功能,理解并打开“黑盒深机学习表示”的信息推理方面。本文将讨论Lagrangian和Hamiltonian领域中神经网络的统计物理解释。

As a network-based functional approximator, we have proposed a "Lagrangian Density Space-Time Deep Neural Networks" (LDDNN) topology. It is qualified for unsupervised training and learning to predict the dynamics of underlying physical science governed phenomena. The prototypical network respects the fundamental conservation laws of nature through the succinctly described Lagrangian and Hamiltonian density of the system by a given data-set of generalized nonlinear partial differential equations. The objective is to parameterize the Lagrangian density over a neural network and directly learn from it through data instead of hand-crafting an exact time-dependent "Action solution" of Lagrangian density for the physical system. With this novel approach, can understand and open up the information inference aspect of the "Black-box deep machine learning representation" for the physical dynamics of nature by constructing custom-tailored network interconnect topologies, activation, and loss/cost functions based on the underlying physical differential operators. This article will discuss statistical physics interpretation of neural networks in the Lagrangian and Hamiltonian domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源