论文标题
四足运动的最佳运动计划框架
An Optimal Motion Planning Framework for Quadruped Jumping
论文作者
论文摘要
本文提出了一个最佳的运动计划框架,以自动生成多功能的四足动物跳跃运动(例如,翻转,旋转)。通过质心动力学的跳跃运动被配制为受机器人基诺动力约束的12维黑盒优化问题。基于梯度的方法在解决轨迹优化方面取得了巨大成功(TO),但是,需要先验知识(例如,参考运动,联系时间表),并导致次优的解决方案。新提出的框架首先采用了一种基于启发式的优化方法来避免这些问题。此外,为机器人地面反作用力(GRF)计划中的基于启发式的算法创建了优先级的健身函数,增强收敛性和搜索性能。由于基于启发式的算法通常需要大量时间,因此计划离线运动并作为动作前库存储。选择器旨在自动选择用用户指定或感知信息作为输入的动议。该框架仅通过几项具有挑战性的跳跃动作在开源迷你室中进行了简单的持续跟踪PD控制器的成功验证,包括跳过30厘米高度的窗户形状障碍物,并在30厘米高的高度上跳过矩形障碍物,高度为27厘米。
This paper presents an optimal motion planning framework to generate versatile energy-optimal quadrupedal jumping motions automatically (e.g., flips, spin). The jumping motions via the centroidal dynamics are formulated as a 12-dimensional black-box optimization problem subject to the robot kino-dynamic constraints. Gradient-based approaches offer great success in addressing trajectory optimization (TO), yet, prior knowledge (e.g., reference motion, contact schedule) is required and results in sub-optimal solutions. The new proposed framework first employed a heuristics-based optimization method to avoid these problems. Moreover, a prioritization fitness function is created for heuristics-based algorithms in robot ground reaction force (GRF) planning, enhancing convergence and searching performance considerably. Since heuristics-based algorithms often require significant time, motions are planned offline and stored as a pre-motion library. A selector is designed to automatically choose motions with user-specified or perception information as input. The proposed framework has been successfully validated only with a simple continuously tracking PD controller in an open-source Mini-Cheetah by several challenging jumping motions, including jumping over a window-shaped obstacle with 30 cm height and left-flipping over a rectangle obstacle with 27 cm height.