论文标题

深度学习以预测公共建筑的能耗

Deep Learning for Forecasting the Energy Consumption in Public Buildings

论文作者

Chifu, Viorica Rozina, Pop, Cristina Bianca, Chifu, Emil St., Barleanu, Horatiu

论文摘要

在本文中,我们提出了一种基于短期内存网络的长期方法,以根据过去的测量值来预测公共建筑物的能源消耗。我们的方法包括三个主要步骤:数据处理步骤,培训和验证步骤,最后是预测步骤。我们在一个数据集上测试了我们的方法,该数据集由英国国家档案馆的主要建筑物的主要建筑物,在KEW中,作为评估指标,我们使用了平均绝对错误(MAE)和平均绝对百分比误差(MAPE)。

In this paper we propose a Long Short-Term Memory Network based method to forecast the energy consumption in public buildings, based on past measurements. Our approach consists of three main steps: data processing step, training and validation step, and finally the forecasting step. We tested our method on a data set consisting of measurements taken every half an hour from the main building of the National Archives of the United Kingdom, in Kew and as evaluation metrics we have used Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源