论文标题

限制移动平均过程的行为,由子线性期望下的负依赖性随机变量基因造成

Limiting behaviour of moving average processes genenrated by negatively dependent random variables under sub-linear expectations

论文作者

Xu, Mingzhou, Cheng, Kun, Yu, Wangke

论文摘要

令$ \ {y_i, - \ infty <i <\ infty \} $成为一个相同的无限分布的无限序列,在子线性期望下,$ \ {a_i, - \ infty <i <i <\ iffty \} $是绝对可实现的总结序列。在本文中,我们研究了全部收敛和Marcinkiewicz-Zygmund跨越大量的法定,以零售的平均流程的部分总和$ \ {x_n = \ sum_ {i = - \ fty}^{\ infty}^{\ infty} {\ infty} a_ {i} $ \ {y_i, - \ infty <i <\ infty \} $在子线性期望下相同分布,负依赖的随机变量,补充了[Chen等人,2009年。限制了$φ$ $ mixing假设的限制移动平均流程的限制行为。统计学家。概率。 Lett。 79,105-111]。

Let $\{Y_i,-\infty<i<\infty\}$ be a doubly infinite sequence of identically distributed, negatively dependent random variables under sub-linear expectations, $\{a_i,-\infty<i<\infty\}$ be an absolutely summable sequence of real numbers. In this article, we study complete convergence and Marcinkiewicz-Zygmund strog law of large numbers for the partial sums of moving average processes $\{X_n=\sum_{i=-\infty}^{\infty}a_{i}Y_{i+n},n\ge 1\}$ based on the sequence $\{Y_i,-\infty<i<\infty\}$ of identically distributed, negatively dependent random variables under sub-linear expectations, complementing the result of [Chen, et al., 2009. Limiting behaviour of moving average processes under $φ$-mixing assumption. Statist. Probab. Lett. 79, 105-111].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源