论文标题

编码无线网络的争夺分辨率

Contention Resolution for Coded Radio Networks

论文作者

Bender, Michael A., Gilbert, Seth, Kuhn, Fabian, Kuszmaul, John, Médard, Muriel

论文摘要

随机退回协议(例如指数向后)是管理访问共享资源的强大工具,通常是无线通信渠道(例如[1])。为了成功发送无线设备,它使用退回协议来确保对通道的独家访问。但是,现代收音机不需要独家访问通道进行交流;特别是,即使在同一设备同时传输多个设备时,它们也具有接收有用信息的能力。这些功能现在已被依靠干扰取消,物理层网络编码和模拟网络编码以提高效率的系统利用了很多年。例如,Zigzag解码[56]证明了基站如何同时解码多个设备发送的消息。 在本文中,我们解决了以下问题:当不需要独家频道访问时,我们是否可以设计一个比指数退回更好的退缩协议。我们定义了编码的无线网络模型,该模型概括了传统的无线网络模型(例如[30])。然后,我们介绍了可解码的退回算法,这是一种随机向后协议,可达到$ 1-O(1)$的最佳吞吐量。 (吞吐量$ 1 $是最佳的,因为同时接收不会增加通道容量。)算法破坏了传统无线网络的恒定吞吐量下限[47-49],显示了这些新硬件功能的功能。

Randomized backoff protocols, such as exponential backoff, are a powerful tool for managing access to a shared resource, often a wireless communication channel (e.g., [1]). For a wireless device to transmit successfully, it uses a backoff protocol to ensure exclusive access to the channel. Modern radios, however, do not need exclusive access to the channel to communicate; in particular, they have the ability to receive useful information even when more than one device transmits at the same time. These capabilities have now been exploited for many years by systems that rely on interference cancellation, physical layer network coding and analog network coding to improve efficiency. For example, Zigzag decoding [56] demonstrated how a base station can decode messages sent by multiple devices simultaneously. In this paper, we address the following question: Can we design a backoff protocol that is better than exponential backoff when exclusive channel access is not required. We define the Coded Radio Network Model, which generalizes traditional radio network models (e.g., [30]). We then introduce the Decodable Backoff Algorithm, a randomized backoff protocol that achieves an optimal throughput of $1-o(1)$. (Throughput $1$ is optimal, as simultaneous reception does not increase the channel capacity.) The algorithm breaks the constant throughput lower bound for traditional radio networks [47-49], showing the power of these new hardware capabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源