论文标题
$ c^0 $距离和anosov-katok伪旋转的Hölder-type不平等
A Hölder-type inequality for the $C^0$ distance and Anosov-Katok pseudo-rotations
论文作者
论文摘要
我们证明了Hölder-type不平等的不平等,用于$ C^0 $ norm,$ c^0 $ norm and serivative and norm and Hofer/Spectral Norm。因此,我们获得了HOFER/频谱度量$ C^0 $收敛的足够快速收敛。我们论文的第二个主题是对Anosov-Katok方法产生的伪旋转的研究。作为我们的Hölder-type不平等的应用,我们证明了此类伪旋转的$ C^0 $刚性。
We prove a Hölder-type inequality for Hamiltonian diffeomorphisms relating the $C^0$ norm, the $C^0$ norm of the derivative, and the Hofer/spectral norm. We obtain as a consequence that sufficiently fast convergence in Hofer/spectral metric forces $C^0$ convergence. The second theme of our paper is the study of pseudo-rotations that arise from the Anosov-Katok method. As an application of our Hölder-type inequality, we prove a $C^0$ rigidity result for such pseudo-rotations.