论文标题
终身人士在分布式边缘重新识别的时空联合学习
Spatial-Temporal Federated Learning for Lifelong Person Re-identification on Distributed Edges
论文作者
论文摘要
当将人员重新识别(REID)模型部署到现实世界设备中时,数据漂移是一个棘手的挑战,在该设备中,数据分布与培训环境的数据分配明显不同并不断变化。为了解决这个问题,我们提出了一种名为FedStil的联合时空增量学习方法,该方法利用了终身学习和联合学习,以不断优化在许多分布式边缘客户端部署的模型。与以前的努力不同,FedStil的目标是挖掘从不同边缘客户学到的知识之间的时空相关性。具体而言,Edge客户端首先定期提取漂移数据的一般表示,以优化其本地模型。然后,从Edge客户端学习的知识将通过集中参数服务器汇总,其中知识将通过精心设计的机制进行选择性和专注于从空间和时间维度进行蒸馏。最后,蒸馏的信息空间知识将被发送回相关的边缘客户,以通过终生学习方法进一步提高每个边缘客户端的识别精度。对五个现实世界数据集的混合物进行了广泛的实验表明,我们的方法在排名-1的准确性上优于其他方法,同时将沟通成本降低62%。所有实施代码均在https://github.com/msnlab/federated-lifelong-person-reid上公开可用
Data drift is a thorny challenge when deploying person re-identification (ReID) models into real-world devices, where the data distribution is significantly different from that of the training environment and keeps changing. To tackle this issue, we propose a federated spatial-temporal incremental learning approach, named FedSTIL, which leverages both lifelong learning and federated learning to continuously optimize models deployed on many distributed edge clients. Unlike previous efforts, FedSTIL aims to mine spatial-temporal correlations among the knowledge learnt from different edge clients. Specifically, the edge clients first periodically extract general representations of drifted data to optimize their local models. Then, the learnt knowledge from edge clients will be aggregated by centralized parameter server, where the knowledge will be selectively and attentively distilled from spatial- and temporal-dimension with carefully designed mechanisms. Finally, the distilled informative spatial-temporal knowledge will be sent back to correlated edge clients to further improve the recognition accuracy of each edge client with a lifelong learning method. Extensive experiments on a mixture of five real-world datasets demonstrate that our method outperforms others by nearly 4% in Rank-1 accuracy, while reducing communication cost by 62%. All implementation codes are publicly available on https://github.com/MSNLAB/Federated-Lifelong-Person-ReID