论文标题

基于梯度的双层优化用于深度学习:调查

Gradient-based Bi-level Optimization for Deep Learning: A Survey

论文作者

Chen, Can, Chen, Xi, Ma, Chen, Liu, Zixuan, Liu, Xue

论文摘要

双层优化,尤其是基于梯度的类别,已在深度学习社区中广泛使用,包括超参数优化和元知识提取。 BI级优化将一个问题嵌入另一个问题,基于梯度的类别通过计算超级级别来解决外部级别任务,这比经典方法(例如进化算法)更有效。在这项调查中,我们首先对基于梯度的双层优化进行正式定义。接下来,我们列举标准以确定研究问题是否适合双层优化,并为将这些问题构造成双层优化框架提供了实用指南,这是对该领域新手特别有益的功能。更具体地说,有两种公式:单任务公式,以优化超参数(例如正则参数和蒸馏数据),以及提取元知识的多任务公式,例如模型初始化。然后,使用BI级公式,我们讨论了四个BI级优化求解器,以更新外部变量,包括显式梯度更新,代理更新,隐式函数更新和闭合形式更新。最后,我们通过强调两个潜在的未来方向来结束调查:(1)通过任务制定镜头检查的科学的有效数据优化。 (2)从优化的角度分析了准确的明确代理更新。

Bi-level optimization, especially the gradient-based category, has been widely used in the deep learning community including hyperparameter optimization and meta-knowledge extraction. Bi-level optimization embeds one problem within another and the gradient-based category solves the outer-level task by computing the hypergradient, which is much more efficient than classical methods such as the evolutionary algorithm. In this survey, we first give a formal definition of the gradient-based bi-level optimization. Next, we delineate criteria to determine if a research problem is apt for bi-level optimization and provide a practical guide on structuring such problems into a bi-level optimization framework, a feature particularly beneficial for those new to this domain. More specifically, there are two formulations: the single-task formulation to optimize hyperparameters such as regularization parameters and the distilled data, and the multi-task formulation to extract meta-knowledge such as the model initialization. With a bi-level formulation, we then discuss four bi-level optimization solvers to update the outer variable including explicit gradient update, proxy update, implicit function update, and closed-form update. Finally, we wrap up the survey by highlighting two prospective future directions: (1) Effective Data Optimization for Science examined through the lens of task formulation. (2) Accurate Explicit Proxy Update analyzed from an optimization standpoint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源