论文标题
基于扭转的解决方案,用于J2问题的双曲线状态
A torsion-based solution to the hyperbolic regime of the J2-problem
论文作者
论文摘要
从J2-Problem Hamiltonian消除了视差术语后,获得了人工卫星理论中的流行中介。由此产生的准轻巧系统又通过扭转转换为开普勒问题。当将这种还原过程应用于无界轨道时,溶液是由开普勒骨化的。在最后一个情况下,我们表明基于扭转的解决方案为flyby计算中通常使用的开普勒近似值提供了有效的替代方法。另外,我们检查是否将基于扭转的溶液扩展到更高的填充系数的较高顺序会产生渐近溶液对真轨道的预期收敛。
A popular intermediary in the theory of artificial satellites is obtained after the elimination of parallactic terms from the J2-problem Hamiltonian. The resulting quasi-Keplerian system is in turn converted into the Kepler problem by a torsion. When this reduction process is applied to unbounded orbits the solution is made of Keplerian hyperbolae. For this last case, we show that the torsion-based solution provides an effective alternative to the Keplerian approximation customarily used in flyby computations. Also, we check that the extension of the torsion-based solution to higher orders of the oblateness coefficient yields the expected convergence of asymptotic solutions to the true orbit.