论文标题

通过相互对比学习的在线知识蒸馏以视觉识别

Online Knowledge Distillation via Mutual Contrastive Learning for Visual Recognition

论文作者

Yang, Chuanguang, An, Zhulin, Zhou, Helong, Zhuang, Fuzhen, Xu, Yongjun, Zhan, Qian

论文摘要

无教师的在线知识蒸馏(KD)旨在协作培训多个学生模型的合奏,并彼此提炼知识。尽管现有的在线KD方法实现了理想的性能,但它们通常专注于阶级概率作为核心知识类型,而忽略了宝贵的特征代表信息。我们为在线KD提供了一个相互的对比学习(MCL)框架。 MCL的核心思想是以在线方式进行对比度分布的相互交互和转移。我们的MCL可以汇总跨网络嵌入信息,并最大化两个网络之间的相互信息的下限。这使每个网络能够从他人那里学习额外的对比知识,从而提供更好的特征表示形式,从而提高视觉识别任务的性能。除最后一层外,我们还将MCL扩展到中间层,并执行通过元优化训练的自适应层匹配机制。图像分类和转移学习到视觉识别任务的实验表明,层的MCL可以导致针对最新的在线KD方法的稳定的性能提高。优势表明,层的MCL可以指导网络生成更好的特征表示。我们的代码在https://github.com/winycg/l-mcl上公开可用。

The teacher-free online Knowledge Distillation (KD) aims to train an ensemble of multiple student models collaboratively and distill knowledge from each other. Although existing online KD methods achieve desirable performance, they often focus on class probabilities as the core knowledge type, ignoring the valuable feature representational information. We present a Mutual Contrastive Learning (MCL) framework for online KD. The core idea of MCL is to perform mutual interaction and transfer of contrastive distributions among a cohort of networks in an online manner. Our MCL can aggregate cross-network embedding information and maximize the lower bound to the mutual information between two networks. This enables each network to learn extra contrastive knowledge from others, leading to better feature representations, thus improving the performance of visual recognition tasks. Beyond the final layer, we extend MCL to intermediate layers and perform an adaptive layer-matching mechanism trained by meta-optimization. Experiments on image classification and transfer learning to visual recognition tasks show that layer-wise MCL can lead to consistent performance gains against state-of-the-art online KD approaches. The superiority demonstrates that layer-wise MCL can guide the network to generate better feature representations. Our code is publicly avaliable at https://github.com/winycg/L-MCL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源