论文标题

局部均匀随机排列中的单调子序

Monotone Subsequences in Locally Uniform Random Permutations

论文作者

Sjöstrand, Jonas

论文摘要

本地统一的随机排列是通过独立于飞机上的某些连续分配$ρ$对$ n $点进行采样而产生的,并将其解释为规则,即如果左侧的$ j $ th点是$ j $ th的规则。由于$ n $倾向于无穷大,置换的子序列减少将以平面的曲线形式出现,并通过将其解释为水平曲线,降低子序列的结合会导致表面。我们表明,在正确的缩放下,对于任何$ r \ ge0 $,是$ \ lfloor r \ sqrt {n} \ rfloor $降低子序列的最大结合,因为$ n $倾向于无限,而极限表面是对特定变异问题的限制表面。作为推论,我们证明存在与罗宾逊 - 雪橇通讯下随机置换相关的年轻图的极限形状。在特殊情况下,$ρ$是钻石$ | x |+| y | <1 $上的均匀分布,我们认为极限形状是三角形的,并且假设猜想是正确的,我们找到了均匀随机置换的极限表面的明确公式,并恢复了Vershik,Kerov和Logan和Logan,Shepp,Shepp的著名限制形状。

A locally uniform random permutation is generated by sampling $n$ points independently from some absolutely continuous distribution $ρ$ on the plane and interpreting them as a permutation by the rule that $i$ maps to $j$ if the $i$th point from the left is the $j$th point from below. As $n$ tends to infinity, decreasing subsequences in the permutation will appear as curves in the plane, and by interpreting these as level curves, a union of decreasing subsequences give rise to a surface. We show that, under the correct scaling, for any $r\ge0$, the largest union of $\lfloor r\sqrt{n}\rfloor$ decreasing subsequences approaches a limit surface as $n$ tends to infinity, and the limit surface is a solution to a specific variational problem. As a corollary, we prove the existence of a limit shape for the Young diagram associated to the random permutation under the Robinson-Schensted correspondence. In the special case where $ρ$ is the uniform distribution on the diamond $|x|+|y|<1$ we conjecture that the limit shape is triangular, and assuming the conjecture is true we find an explicit formula for the limit surfaces of a uniformly random permutation and recover the famous limit shape of Vershik, Kerov and Logan, Shepp.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源