论文标题
COMPNVS:新颖的视图合成与场景完成
CompNVS: Novel View Synthesis with Scene Completion
论文作者
论文摘要
我们引入了一个可扩展的框架,用于从RGB-D图像中具有很大不完整的场景覆盖率的新型视图合成。尽管生成性神经方法在2D图像上表现出了壮观的结果,但它们尚未获得相似的影像学结果,并结合了场景完成,在这种情况下,空间3D场景的理解是必不可少的。为此,我们建议通过以2.5D-3D-2.5D方式进行场景的分布来完成稀疏的基于网格的神经场景表示,以完成未观察到的场景部分。我们在3D空间中处理编码的图像特征,并具有几何完整网络和随后的纹理镶嵌网络,以推断缺失区域。最终可以通过与一致性的可区分渲染获得感性图像序列。全面的实验表明,我们方法的图形输出优于最新技术,尤其是在未观察到的场景部分中。
We introduce a scalable framework for novel view synthesis from RGB-D images with largely incomplete scene coverage. While generative neural approaches have demonstrated spectacular results on 2D images, they have not yet achieved similar photorealistic results in combination with scene completion where a spatial 3D scene understanding is essential. To this end, we propose a generative pipeline performing on a sparse grid-based neural scene representation to complete unobserved scene parts via a learned distribution of scenes in a 2.5D-3D-2.5D manner. We process encoded image features in 3D space with a geometry completion network and a subsequent texture inpainting network to extrapolate the missing area. Photorealistic image sequences can be finally obtained via consistency-relevant differentiable rendering. Comprehensive experiments show that the graphical outputs of our method outperform the state of the art, especially within unobserved scene parts.