论文标题
深肺炎:基于注意的对比度学习,用于胸部X射线的类不平衡肺炎病变识别
Deep Pneumonia: Attention-Based Contrastive Learning for Class-Imbalanced Pneumonia Lesion Recognition in Chest X-rays
论文作者
论文摘要
计算机辅助X射线肺炎病变识别对于准确诊断肺炎很重要。随着深度学习的出现,肺炎的识别精度得到了极大的改善,但是由于胸部X射线的模糊外观,仍然存在一些挑战。在本文中,我们提出了一个深度学习框架,称为基于注意力的对比度学习,用于治疗X射线肺炎病变识别(称为深肺炎)。我们采用自我监督的对比学习策略来预先培训模型,而无需使用额外的肺炎数据来完全挖掘有限的可用数据集。为了利用医生精心贴出的病变区域的位置信息,我们提出了面具引导的硬注意策略和特征学习以及具有对比性调节策略的特征学习,这些策略适用于注意力图和提取的特征,以分别指导该模型将更多的注意力集中在病灶上,其中包含更多歧视性特征,以提高识别性能。此外,我们采用级别平衡的损失,而不是传统的跨凝性作为分类的损失函数,以解决数据集中不同类别肺炎之间严重类不平衡的问题。实验结果表明,我们提出的框架可以用作可靠的计算机辅助肺炎诊断系统,以帮助医生更好地诊断肺炎病例。
Computer-aided X-ray pneumonia lesion recognition is important for accurate diagnosis of pneumonia. With the emergence of deep learning, the identification accuracy of pneumonia has been greatly improved, but there are still some challenges due to the fuzzy appearance of chest X-rays. In this paper, we propose a deep learning framework named Attention-Based Contrastive Learning for Class-Imbalanced X-Ray Pneumonia Lesion Recognition (denoted as Deep Pneumonia). We adopt self-supervised contrastive learning strategy to pre-train the model without using extra pneumonia data for fully mining the limited available dataset. In order to leverage the location information of the lesion area that the doctor has painstakingly marked, we propose mask-guided hard attention strategy and feature learning with contrastive regulation strategy which are applied on the attention map and the extracted features respectively to guide the model to focus more attention on the lesion area where contains more discriminative features for improving the recognition performance. In addition, we adopt Class-Balanced Loss instead of traditional Cross-Entropy as the loss function of classification to tackle the problem of serious class imbalance between different classes of pneumonia in the dataset. The experimental results show that our proposed framework can be used as a reliable computer-aided pneumonia diagnosis system to assist doctors to better diagnose pneumonia cases accurately.