论文标题
部分可观测时空混沌系统的无模型预测
Large-Kernel Attention for 3D Medical Image Segmentation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Automatic segmentation of multiple organs and tumors from 3D medical images such as magnetic resonance imaging (MRI) and computed tomography (CT) scans using deep learning methods can aid in diagnosing and treating cancer. However, organs often overlap and are complexly connected, characterized by extensive anatomical variation and low contrast. In addition, the diversity of tumor shape, location, and appearance, coupled with the dominance of background voxels, makes accurate 3D medical image segmentation difficult. In this paper, a novel large-kernel (LK) attention module is proposed to address these problems to achieve accurate multi-organ segmentation and tumor segmentation. The advantages of convolution and self-attention are combined in the proposed LK attention module, including local contextual information, long-range dependence, and channel adaptation. The module also decomposes the LK convolution to optimize the computational cost and can be easily incorporated into FCNs such as U-Net. Comprehensive ablation experiments demonstrated the feasibility of convolutional decomposition and explored the most efficient and effective network design. Among them, the best Mid-type LK attention-based U-Net network was evaluated on CT-ORG and BraTS 2020 datasets, achieving state-of-the-art segmentation performance. The performance improvement due to the proposed LK attention module was also statistically validated.