论文标题

多码相交的可移动锥在投影空间的产品上

Movable cones of complete intersections of multidegree one on products of projective spaces

论文作者

Hoff, Michael, Stenger, Isabel, Yáñez, José Ignacio

论文摘要

我们研究了卡拉比(Calabi-Yau)的歧管,这些歧管是多智能$ 1 $ 1 $ $ m $倍的产品的完整交叉点,$ n $二维投射空间。使用Coxeter群体的理论,我们表明这样的Calabi-yau歧管$ x $的Birational Automorthism群体是无限的,并且是$ \ Mathbb {Z} $的副本的免费产品。此外,我们对可移动锥$ \ operline {\ operatatorName {mov}}}(x)$的边界进行明确描述。最后,我们考虑了一般和非务件案例的示例,并描绘了可移动锥和$ \ operatotorname {bir}(x)$的动作的基本域。

We study Calabi-Yau manifolds which are complete intersections of hypersurfaces of multidegree $1$ in an $m$-fold product of $n$-dimensional projective spaces. Using the theory of Coxeter groups, we show that the birational automorphism group of such a Calabi-Yau manifold $X$ is infinite and a free product of copies of $\mathbb{Z}$ . Moreover, we give an explicit description of the boundary of the movable cone $\overline{\operatorname{Mov}}(X)$. In the end, we consider examples for the general and non-general case and picture the movable cone and the fundamental domain for the action of $\operatorname{Bir}(X)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源