论文标题
潜在空间无监督的语义细分
Latent Space Unsupervised Semantic Segmentation
论文作者
论文摘要
紧凑和节能的可穿戴传感器的发展导致生物信号的可用性增加。为了分析这些连续记录的,通常是多维的时间序列,能够进行有意义的无监督数据分割是一个吉祥的目标。实现这一目标的一种常见方法是将时间序列中的变更点确定为分段。但是,传统的更改点检测算法通常带有缺点,从而限制了其现实世界的适用性。值得注意的是,他们通常依靠完整的时间序列可用,因此不能用于实时应用程序。另一个常见的限制是,它们处理多维时间序列的分割很差(或无法)。因此,这项工作的主要贡献是提出一种新型的无监督分段算法,用于多维时间序列,名为潜在空间无监督的语义细分(LS-USS),该算法旨在轻松与在线和批处理数据一起使用。在将LS-USS与其他最先进的更改点检测算法进行比较时,在离线和实时设置中,LS-USS在PAR或更好的性能上都可以实现LS-Uss的系统。
The development of compact and energy-efficient wearable sensors has led to an increase in the availability of biosignals. To analyze these continuously recorded, and often multidimensional, time series at scale, being able to conduct meaningful unsupervised data segmentation is an auspicious target. A common way to achieve this is to identify change-points within the time series as the segmentation basis. However, traditional change-point detection algorithms often come with drawbacks, limiting their real-world applicability. Notably, they generally rely on the complete time series to be available and thus cannot be used for real-time applications. Another common limitation is that they poorly (or cannot) handle the segmentation of multidimensional time series. Consequently, the main contribution of this work is to propose a novel unsupervised segmentation algorithm for multidimensional time series named Latent Space Unsupervised Semantic Segmentation (LS-USS), which was designed to work easily with both online and batch data. When comparing LS-USS against other state-of-the-art change-point detection algorithms on a variety of real-world datasets, in both the offline and real-time setting, LS-USS systematically achieves on par or better performances.