论文标题

相对旋转式代数和共同体上的双模型

Bimodules over relative Rota-Baxter algebras and cohomologies

论文作者

Das, Apurba, Mishra, Satyendra Kumar

论文摘要

相对Rota-Baxter代数是Rota-Baxter代数的概括。相对Rota-baxter代数与树突形代数密切相关。在本文中,我们在相对的旋转式代数上引入双模型,该代数与树突状代数的表示。我们定义了双模块中具有系数的相对Rota-baxter代数的共同体,然后根据第二个共同体学组研究相对Rota-Baxter代数的Abelian扩展。最后,我们考虑了同型相对rota-baxter代数,并根据上定义的共同体学对骨骼同义相对rota-baxter代数进行了分类。

A relative Rota-Baxter algebra is a generalization of a Rota-Baxter algebra. Relative Rota-Baxter algebras are closely related to dendriform algebras. In this paper, we introduce bimodules over a relative Rota-Baxter algebra that fits with the representations of dendriform algebras. We define the cohomology of a relative Rota-Baxter algebra with coefficients in a bimodule and then study abelian extensions of relative Rota-Baxter algebras in terms of the second cohomology group. Finally, we consider homotopy relative Rota-Baxter algebras and classify skeletal homotopy relative Rota-Baxter algebras in terms of the above-defined cohomology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源