论文标题
基于视觉的人类跌落检测系统使用深度学习:评论
Vision-based Human Fall Detection Systems using Deep Learning: A Review
论文作者
论文摘要
人类堕落是非常关键的健康问题之一,尤其是对于长老和残疾人而言。在全球范围内,老年人口的数量正在稳步增加。因此,人类的跌倒检测已成为这些人辅助生活的有效技术。为了辅助生活,大量使用了深度学习和计算机视觉。在这篇评论文章中,我们讨论了基于深度学习(基于视觉的)秋季检测技术的最先进(DL)。我们还提出了有关秋季检测基准数据集的调查。为了清楚理解,我们简要讨论用于评估秋季检测系统性能的不同指标。本文还为基于视觉的人类跌落检测技术提供了未来的指导。
Human fall is one of the very critical health issues, especially for elders and disabled people living alone. The number of elder populations is increasing steadily worldwide. Therefore, human fall detection is becoming an effective technique for assistive living for those people. For assistive living, deep learning and computer vision have been used largely. In this review article, we discuss deep learning (DL)-based state-of-the-art non-intrusive (vision-based) fall detection techniques. We also present a survey on fall detection benchmark datasets. For a clear understanding, we briefly discuss different metrics which are used to evaluate the performance of the fall detection systems. This article also gives a future direction on vision-based human fall detection techniques.