论文标题

基于Block-Online FastMNMF驱动的框架内边界的无DNN低延迟自适应语音增强

DNN-Free Low-Latency Adaptive Speech Enhancement Based on Frame-Online Beamforming Powered by Block-Online FastMNMF

论文作者

Nugraha, Aditya Arie, Sekiguchi, Kouhei, Fontaine, Mathieu, Bando, Yoshiaki, Yoshii, Kazuyoshi

论文摘要

本文介绍了一个实用的双处理语音增强系统,该系统在环境无环境的框架线路源分离(后端)的帮助下适应环境敏感的框架在线边界(前端)。为了使用最小差异无扭曲响应(MVDR)波束形成,可以训练深层神经网络(DNN),该网络(DNN)估计用于计算源的协方差矩阵(语音和噪声)的时间频面掩码。提出了基于反向传播的DNN的运行时间改编,以处理不匹配的训练测试条件。取而代之的是,人们可能会尝试使用一种最先进的盲源分离方法直接估计源协方差矩阵,称为快速多通道非阴性矩阵分解(FastMNMF)。但是,在实践中,由于其计算较高的迭代性质,DNN和FastMNMF都无法以框架方式进行更新。我们的无DNN系统利用了块 - 连接FastMNMF给出的最新源频谱图的后代,以推导当前的源协方差矩阵,用于在线边界。评估表明,我们的框架在线系统可以快速响应由干扰扬声器移动而引起的场景变化,并在单词错误率方面超过了基于DNN的横梁的现有块连接系统,而基于DNN的光束成绩为5.0点。

This paper describes a practical dual-process speech enhancement system that adapts environment-sensitive frame-online beamforming (front-end) with help from environment-free block-online source separation (back-end). To use minimum variance distortionless response (MVDR) beamforming, one may train a deep neural network (DNN) that estimates time-frequency masks used for computing the covariance matrices of sources (speech and noise). Backpropagation-based run-time adaptation of the DNN was proposed for dealing with the mismatched training-test conditions. Instead, one may try to directly estimate the source covariance matrices with a state-of-the-art blind source separation method called fast multichannel non-negative matrix factorization (FastMNMF). In practice, however, neither the DNN nor the FastMNMF can be updated in a frame-online manner due to its computationally-expensive iterative nature. Our DNN-free system leverages the posteriors of the latest source spectrograms given by block-online FastMNMF to derive the current source covariance matrices for frame-online beamforming. The evaluation shows that our frame-online system can quickly respond to scene changes caused by interfering speaker movements and outperformed an existing block-online system with DNN-based beamforming by 5.0 points in terms of the word error rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源