论文标题

在不同环境中的加尔顿 - 瓦特森树的合并结构

The coalescent structure of Galton-Watson trees in varying environments

论文作者

Harris, Simon C., Palau, Sandra, Pardo, Juan Carlos

论文摘要

我们研究了均匀地选择的$ k \ geq1 $颗粒样本的家谱,而在不同的环境(GWVE)中,在关键的离散时间Galton-Watson进程中,在很大程度上活着的人群替换了。我们将表明,只要仅涉及不同后代分布的平均值和方差的明确确定性时间变化,样本谱系总是会收敛到相同的普遍家谱结构。它具有与金曼(Kingman)的融合相同的树拓扑结构,而$ k-1 $ $成对合并的结合时间看起来就像是独立分布的时间的混合物。我们的方法使用$ k $区分的\ emph {spine}颗粒和适当的度量更改,在该方法下,(a)脊柱形成一个均匀的样品,而无需根据需要替换,但是(b)$ k $ size size size sive and sive and sive yiver the Mustans sivers the Musess sivers sivers sive。我们的工作大大扩展了Harris,Johnston和Roberts \ emph {[[Annals Applied Poberipity,2020]}的脊柱技术,用于在近乎关键的连续时间Galton-Watson过程中大小$ k $的均匀样本的家谱,以及在Cardona和Palau and Palau and Palau和palau \ emphil的两刺galton-watson过程中。我们的结果补充了Kersting \ emph {[Proc。 Steklov Inst。 Maths。,2022]}和Boenkost,Foutel-Rodier和Schertzer \ Emph {[Arxiv:2207.11612]}。

We investigate the genealogy of a sample of $k\geq1$ particles chosen uniformly without replacement from a population alive at large times in a critical discrete-time Galton-Watson process in a varying environment (GWVE). We will show that subject to an explicit deterministic time-change involving only the mean and variances of the varying offspring distributions, the sample genealogy always converges to the same universal genealogical structure; it has the same tree topology as Kingman's coalescent, and the coalescent times of the $k-1$ pairwise mergers look like a mixture of independent identically distributed times. Our approach uses $k$ distinguished \emph{spine} particles and a suitable change of measure under which (a) the spines form a uniform sample without replacement, as required, but additionally (b) there is $k$-size biasing and discounting according to the population size. Our work significantly extends the spine techniques developed in Harris, Johnston, and Roberts \emph{[Annals Applied Probability, 2020]} for genealogies of uniform samples of size $k$ in near-critical continuous-time Galton-Watson processes, as well as a two-spine GWVE construction in Cardona and Palau \emph{[Bernoulli, 2021]}. Our results complement recent works by Kersting \emph{[Proc. Steklov Inst. Maths., 2022]} and Boenkost, Foutel-Rodier, and Schertzer \emph{[arXiv:2207.11612]}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源