论文标题
高纤维化曲线的模量空间的理性盘子环具有明显的点
The rational Chow rings of moduli spaces of hyperelliptic curves with marked points
论文作者
论文摘要
我们确定$ n $ n $ n $ point $ n $ g $ g $ g $时的模量空间$ \ mathcal {h} _ {g,n} $的合理食物环。我们还表明,部分紧凑型$ \ Mathcal {i} _ {g,n} $的杂烩环,参数化$ n $的不可约定的nodal hydeliptic curves是由重言式分裂产生的。一路上,我们改善了Casnati的结果,即$ \ Mathcal {h} _ {g,n} $对于$ n \ leq 2g+8 $来说是合理的,以显示$ \ MATHCAL {h} _ {g,n} $对于$ n \ leq 3g+5 $是合理的。
We determine the rational Chow ring of the moduli space $\mathcal{H}_{g,n}$ of $n$-pointed smooth hyperelliptic curves of genus $g$ when $n \leq 2g+6$. We also show that the Chow ring of the partial compactification $\mathcal{I}_{g,n}$, parametrizing $n$-pointed irreducible nodal hyperelliptic curves, is generated by tautological divisors. Along the way, we improve Casnati's result that $\mathcal{H}_{g,n}$ is rational for $n \leq 2g+8$ to show $\mathcal{H}_{g,n}$ is rational for $n \leq 3g+5$.