论文标题

用于燃料电池建模的物理受限学习的一种非侵入性方法

A Non-intrusive Approach for Physics-constrained Learning with Application to Fuel Cell Modeling

论文作者

Srivastava, Vishal, Sulzer, Valentin, Mohtat, Peyman, Siegel, Jason B., Duraisamy, Karthik

论文摘要

提出了一个数据驱动的模型增强框架,称为弱耦合的集成推理和机器学习(IIML),以提高物理模型的预测准确性。与参数校准相反,这项工作通过a)推断与基础模型一致的增强字段来寻求对模型结构的校正,b)将这些字段转换为纠正模型形式。所提出的方法通过交替的优化方法将弱意义上的推论和学习步骤融合在一起。这种耦合可确保增强字段保持可学习,并与整个培训数据集的本地建模数量保持一致的功能关系。本文提出了迭代解决方案程序,从而消除了在推理过程中嵌入增强功能的需求。该框架用于推断在聚合物电解质膜燃料电池(PEMFC)模型中使用少量训练数据(仅14个训练案例)引入的增强,这些训练案例属于由由第一代Toyota Mirai的高实际模型获得的高效率模拟数据组成的数据集。该数据集中的所有情况均以相同几何形状上的不同流入和流出条件为特征。当对1224种不同的配置进行测试时,推断的增强显着提高了广泛的物理条件的预测准确性。还比较了当前密度分布的预测和可用数据,以证明模型对推理过程中不涉及的兴趣量的预测能力。结果表明,弱耦合的IIML框架提供了复杂且健壮的模型增强功能,而无需对数值求解器进行大规模更改。

A data-driven model augmentation framework, referred to as Weakly-coupled Integrated Inference and Machine Learning (IIML), is presented to improve the predictive accuracy of physical models. In contrast to parameter calibration, this work seeks corrections to the structure of the model by a) inferring augmentation fields that are consistent with the underlying model, and b) transforming these fields into corrective model forms. The proposed approach couples the inference and learning steps in a weak sense via an alternating optimization approach. This coupling ensures that the augmentation fields remain learnable and maintain consistent functional relationships with local modeled quantities across the training dataset. An iterative solution procedure is presented in this paper, removing the need to embed the augmentation function during the inference process. This framework is used to infer an augmentation introduced within a Polymer electrolyte membrane fuel cell (PEMFC) model using a small amount of training data (from only 14 training cases.) These training cases belong to a dataset consisting of high-fidelity simulation data obtained from a high-fidelity model of a first generation Toyota Mirai. All cases in this dataset are characterized by different inflow and outflow conditions on the same geometry. When tested on 1224 different configurations, the inferred augmentation significantly improves the predictive accuracy for a wide range of physical conditions. Predictions and available data for the current density distribution are also compared to demonstrate the predictive capability of the model for quantities of interest which were not involved in the inference process. The results demonstrate that the weakly-coupled IIML framework offers sophisticated and robust model augmentation capabilities without requiring extensive changes to the numerical solver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源