论文标题

数据驱动的随机AC-OPF使用高斯流程

Data-Driven Stochastic AC-OPF using Gaussian Processes

论文作者

Mitrovic, Mile, Lukashevich, Aleksandr, Vorobev, Petr, Terzija, Vladimir, Budenny, Semen, Maximov, Yury, Deka, Deepjyoti

论文摘要

近年来,电力发电量导致了美国超过四分之一的温室气体排放。将大量的可再生能源整合到电网中可能是减少电网中碳排放并减缓气候变化的最易于使用的方法。不幸的是,风和太阳能等最容易获得的可再生能源是高度波动的,因此给电网操作带来了很多不确定性,并挑战了现有的优化和控制政策。偶然约束的交流电(AC)最佳功率流(OPF)框架找到了最低成本发电的派遣,该调度将电网操作保持在安全限制内,并具有规定的概率。不幸的是,AC-OPF问题的偶然性约束扩展是非凸,计算挑战性,并且需要了解系统参数以及有关可再生分布行为的其他假设。已知的线性和凸近似于上述问题(尽管可以处理),但对于操作实践来说太保守了,并且不考虑系统参数的不确定性。本文提出了一种基于高斯流程(GP)回归以缩小此差距的替代数据驱动方法。 GP方法学习了一个简单但非凸的数据驱动的近似值,即可以包含不确定性输入的交流功率流程。然后,通过考虑输入和参数不确定性,将后者用于有效地确定CC-OPF的解决方案。在众多IEEE测试案例中,说明了使用不同近似值进行GP不确定性传播的拟议方法的实际效率。

In recent years, electricity generation has been responsible for more than a quarter of the greenhouse gas emissions in the US. Integrating a significant amount of renewables into a power grid is probably the most accessible way to reduce carbon emissions from power grids and slow down climate change. Unfortunately, the most accessible renewable power sources, such as wind and solar, are highly fluctuating and thus bring a lot of uncertainty to power grid operations and challenge existing optimization and control policies. The chance-constrained alternating current (AC) optimal power flow (OPF) framework finds the minimum cost generation dispatch maintaining the power grid operations within security limits with a prescribed probability. Unfortunately, the AC-OPF problem's chance-constrained extension is non-convex, computationally challenging, and requires knowledge of system parameters and additional assumptions on the behavior of renewable distribution. Known linear and convex approximations to the above problems, though tractable, are too conservative for operational practice and do not consider uncertainty in system parameters. This paper presents an alternative data-driven approach based on Gaussian process (GP) regression to close this gap. The GP approach learns a simple yet non-convex data-driven approximation to the AC power flow equations that can incorporate uncertainty inputs. The latter is then used to determine the solution of CC-OPF efficiently, by accounting for both input and parameter uncertainty. The practical efficiency of the proposed approach using different approximations for GP-uncertainty propagation is illustrated over numerous IEEE test cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源