论文标题
粘弹性平面喷气机的弹性惯性湍流的时空特征
Spatio-temporal Signatures of Elasto-inertial Turbulence in Viscoelastic Planar Jets
论文作者
论文摘要
在高变形速率下,粘弹性和惯性之间的相互作用会导致惯用弹性不稳定性。这些不稳定性的非线性演化产生的湍流状态与牛顿湍流相比,具有明显不同的时空特征,称为Elasto惯性湍流(EIT)。我们通过研究使用Schlieren Imaging和激光多普勒速率(LDV)的组合,将稀释水性聚合物溶液的浸没平面喷气液的动力学探索。我们展示了流体弹性如何根据其幅度对喷射稳定性产生非单调效应,从而创造了两个不同的机制,在这种方案中,弹性效应可以破坏或稳定射流。与粘弹性喷气机的线性稳定性分析一致,惯性弹性剪切层的不稳定性在射流的边缘附近出现,具有较小的弹性,与流体柱中的散装起伏无关。这种干扰模式的生长破坏了流动稳定,与牛顿射流中湍流所需的条件相比,在下雷诺数下的湍流过渡,更接近喷嘴。增加流体弹性将剪切层的不稳定性融合到喷射柱的巨大不稳定性中。在这种制度中,剪切层中产生的弹性拉伸应力充当“弹性膜”,可部分稳定流动,从而阻碍向湍流向更高水平的惯性和距喷嘴更大距离的过渡。在远离喷嘴的完全湍流状态下,平面粘弹性喷气机具有与EIT相关的独特时空特征。时间平均的射流散布角度,欧拉的夹带程度的度量,喷气机的中心线速度都随着距喷嘴的距离而自相似。喷气机的完全湍流区域中的Schlieren图像的自相关性显示出沿流向方向拉长的连贯结构,这与弹性应力抑制流向涡旋的抑制。这些相干结构在EIT中为小频率模式提供了更高的光谱能,其特征是射流中心线的LDV测量值。最后,我们的LDV测量结果显示出一个以$ -3 $ power-Laws指数为特征的频谱,与纽顿湍流的众所周知的$ -5/3 $ power-law指数特征不同。
The interplay between viscoelasticity and inertia in dilute polymer solutions at high deformation rates can result in inertio-elastic instabilities. The nonlinear evolution of these instabilities generates a state of turbulence with significantly different spatio-temporal features compared to Newtonian turbulence, termed elasto-inertial turbulence (EIT). We explore EIT by studying the dynamics of a submerged planar jet of a dilute aqueous polymer solution injected into a quiescent tank of water using a combination of schlieren imaging and laser Doppler velocimetry (LDV). We show how fluid elasticity has a nonmonotonic effect on the jet stability depending on its magnitude, creating two distinct regimes in which elastic effects can either destabilize or stabilize the jet. In agreement with linear stability analyses of viscoelastic jets, an inertio-elastic shear-layer instability emerges near the edge of the jet for small levels of elasticity, independent of bulk undulations in the fluid column. The growth of this disturbance mode destabilizes the flow, resulting in a turbulence transition at lower Reynolds numbers and closer to the nozzle compared to the conditions required for the transition to turbulence in a Newtonian jet. Increasing the fluid elasticity merges the shear-layer instability into a bulk instability of the jet column. In this regime, elastic tensile stresses generated in the shear layer act as an "elastic membrane" that partially stabilizes the flow, retarding the transition to turbulence to higher levels of inertia and greater distances from the nozzle. In the fully turbulent state far from the nozzle, planar viscoelastic jets exhibit unique spatio-temporal features associated with EIT. The time-averaged angle of jet spreading, an Eulerian measure of the degree of entrainment, and the centerline velocity of the jets both evolve self-similarly with distance from the nozzle. The autocovariance of the schlieren images in the fully turbulent region of the jets shows coherent structures that are elongated in the streamwise direction, consistent with the suppression of streamwise vortices by elastic stresses. These coherent structures give a higher spectral energy to small frequency modes in EIT characterized by LDV measurements of the velocity fluctuations at the jet centerline. Finally, our LDV measurements reveal a frequency spectrum characterized by a $-3$ power-law exponent, different from the well-known $-5/3$ power-law exponent characteristic of Newtonian turbulence.