论文标题
Majorana演示者的可解释的促进决策树分析
Interpretable Boosted Decision Tree Analysis for the Majorana Demonstrator
论文作者
论文摘要
Majorana示威者是一项领先的实验,寻找具有高纯净锗探测器(HPGE)的中微子双β衰变。机器学习提供了一种最大化这些检测器提供的信息量的新方法,但是与传统分析相比,数据驱动的性质使其不可解释。一项可解释性研究揭示了机器的决策逻辑,使我们能够从机器中学习以反馈传统分析。在这项工作中,我们介绍了对Majorana演示者数据的第一个机器学习分析。这也是对任何锗探测器实验的第一个可解释的机器学习分析。训练了两个梯度增强的决策树模型,以从数据中学习,并进行了基于游戏理论的模型可解释性研究,以了解分类功率的起源。通过从数据中学习,该分析识别重建参数之间的相关性,以进一步增强背景拒绝性能。通过从机器中学习,该分析揭示了新背景类别对相互利用标准Majorana分析的重要性。该模型与下一代锗探测器实验(如Legend)高度兼容,因为它可以同时在大量探测器上训练。
The Majorana Demonstrator is a leading experiment searching for neutrinoless double-beta decay with high purity germanium detectors (HPGe). Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable compared to traditional analysis. An interpretability study reveals the machine's decision-making logic, allowing us to learn from the machine to feedback to the traditional analysis. In this work, we have presented the first machine learning analysis of the data from the Majorana Demonstrator; this is also the first interpretable machine learning analysis of any germanium detector experiment. Two gradient boosted decision tree models are trained to learn from the data, and a game-theory-based model interpretability study is conducted to understand the origin of the classification power. By learning from data, this analysis recognizes the correlations among reconstruction parameters to further enhance the background rejection performance. By learning from the machine, this analysis reveals the importance of new background categories to reciprocally benefit the standard Majorana analysis. This model is highly compatible with next-generation germanium detector experiments like LEGEND since it can be simultaneously trained on a large number of detectors.