论文标题
使用单个量距传感器探测二维偶极自旋集合的动力学
Probing dynamics of a two-dimensional dipolar spin ensemble using single qubit sensor
论文作者
论文摘要
了解微观水平的量子多体系统的热动力学是现代统计物理学的主要挑战之一。在这里,我们在钻石晶体表面的电子旋转二维集合中实验研究了单个自旋动力学。我们使用近表面NV中心作为纳米级磁传感器,以探测偶极相互作用表面旋转集合中单个自旋的相关动力学。我们观察到,基于独立估计的偶极相互作用强度与最近的邻居的独立估计的偶极相互作用强度,每种自旋的弛豫率显着慢,并且与局部磁场波动的时间尺度密切相关。我们表明,这种异常缓慢的松弛率是由于存在强大的动力学混乱,并基于动态共振计数提出了定量解释。最后,我们使用共振的自旋驱动来控制局部磁场的有效强度,并揭示了动力学障碍在不同机制中的作用。我们的工作铺平了在强烈相互作用的无序旋转集合中的微观研究和控制量子热化的道路上。
Understanding the thermalization dynamics of quantum many-body systems at the microscopic level is among the central challenges of modern statistical physics. Here we experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal. We use a near-surface NV center as a nanoscale magnetic sensor to probe correlation dynamics of individual spins in a dipolar interacting surface spin ensemble. We observe that the relaxation rate for each spin is significantly slower than the naive expectation based on independently estimated dipolar interaction strengths with nearest neighbors and is strongly correlated with the timescale of the local magnetic field fluctuation. We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder and present a quantitative explanation based on dynamic resonance counting. Finally, we use resonant spin-lock driving to control the effective strength of the local magnetic fields and reveal the role of the dynamical disorder in different regimes. Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.