论文标题

适应性稀疏插值,用于加速非线性随机降低阶与时间依赖性碱基

Adaptive sparse interpolation for accelerating nonlinear stochastic reduced-order modeling with time-dependent bases

论文作者

Naderi, Mohammad Hossein, Babaee, Hessam

论文摘要

基于时间依赖性碱基(TDB)的随机降低阶模型已被证明成功地从随机偏微分方程(SPDE)中提取和利用低维歧管。基于时间相关的基础,又称TDB-ROM求解等级$ r $降低订单模型(ROM)的名义计算成本大致等于求解$ r $随机示例的全阶模型。截至目前,这种名义性能只能为线性或二次SPDE实现 - 以高度侵入性的过程为代价。另一方面,对于非多项式非线性问题的问题,求解TDB进化方程的计算成本与求解全阶模型相同。在这项工作中,我们提出了一种自适应的稀疏插值算法,该算法使随机TDB-ROM能够实现通用非线性SPDES的名义计算成本。我们的算法使用离散的经验插值方法(DEIM)构建了SPDE右侧的低级别近似值。提出的算法不需要任何离线计算,因此,低级别近似可以适应动力学的任何瞬态变化。我们还提出了一种控制稀疏插值误差的等级自适应策略。我们的算法通过对状态和随机空间的自适应采样来实现计算加速。我们说明了两种测试用例的方法的效率:(1)一维随机汉堡方程,以及(2)二维可压缩的Navier-Stokes方程,受到一百二维随机扰动的影响。在所有情况下,提出的算法都会导致计算成本降低数量级。

Stochastic reduced-order modeling based on time-dependent bases (TDBs) has proven successful for extracting and exploiting low-dimensional manifold from stochastic partial differential equations (SPDEs). The nominal computational cost of solving a rank-$r$ reduced-order model (ROM) based on time-dependent basis, a.k.a. TDB-ROM, is roughly equal to that of solving the full-order model for $r$ random samples. As of now, this nominal performance can only be achieved for linear or quadratic SPDEs -- at the expense of a highly intrusive process. On the other hand, for problems with non-polynomial nonlinearity, the computational cost of solving the TDB evolution equations is the same as solving the full-order model. In this work, we present an adaptive sparse interpolation algorithm that enables stochastic TDB-ROMs to achieve nominal computational cost for generic nonlinear SPDEs. Our algorithm constructs a low-rank approximation for the right hand side of the SPDE using the discrete empirical interpolation method (DEIM). The presented algorithm does not require any offline computation and as a result the low-rank approximation can adapt to any transient changes of the dynamics on the fly. We also propose a rank-adaptive strategy to control the error of the sparse interpolation. Our algorithm achieves computational speedup by adaptive sampling of the state and random spaces. We illustrate the efficiency of our approach for two test cases: (1) one-dimensional stochastic Burgers' equation, and (2) two-dimensional compressible Navier-Stokes equations subject to one-hundred-dimensional random perturbations. In all cases, the presented algorithm results in orders of magnitude reduction in the computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源