论文标题

通过滑动的自我推测:多腿运动中的摩擦游泳

Self-propulsion via slipping: frictional swimming in multi-legged locomotors

论文作者

Chong, Baxi, He, Juntao, Li, Shengkai, Erickson, Eva, Diaz, Kelimar, Wang, Tianyu, Soto, Daniel, Goldman, Daniel I.

论文摘要

通常在连续的培养基中研究运动,在该培养基中,体经历了流动培养基产生的力,或者在以摩擦为主的固体底物上进行了研究。在前者中,据信集中协调可以促进适当的滑动介质进行推进。在后者中,通常假定滑动最小,因此通过分散的对照避免了滑动。我们在实验室实验中发现,仪表尺度的多段/腿部roun物理模型的陆地运动类似于波动的流体游泳。尽管看似无效的各向同性摩擦接触,但这些参数改变了肢体步进和身体弯曲的波浪的实验如何导致有效的陆地运动。在这种宏观尺度的制度中,耗散占主导地位,导致类似于显微镜尺度游泳的几何运动。理论分析表明,可以将高维的多段/腿部动力学简化为集中的低维模型,该模型揭示了具有可获得的粘性阻力各向异性的有效电阻理论。我们扩展了低维度的几何分析,以说明身体的起伏如何有助于非平板障碍物丰富的地形中的性能,并使用该方案进行定量模拟身体的起伏如何影响生物学centipede运动的性能(the the Desert Centipede S. polymorpha)以相对较高的速度移动(〜0.5身体长度/sec/sec/sec/sec)。我们的结果可以促进在复杂的人性动态场景中控制多型机器人。

Locomotion is typically studied either in continuous media where bodies and legs experience forces generated by the flowing medium, or on solid substrates dominated by friction. In the former, centralized coordination is believed to facilitate appropriate slipping through the medium for propulsion. In the latter, slip is often assumed minimal and thus avoided via decentralized controls. We discover in laboratory experiments that terrestrial locomotion of a meter scale multi-segmented/legged robophysical model resembles undulatory fluid swimming. Experiments varying waves of limb stepping and body bending reveal how these parameters result in effective terrestrial locomotion despite seemingly ineffective isotropic frictional contacts. Dissipation dominates over inertial effects in this macroscopic-scaled regime, resulting in essentially geometric locomotion akin to microscopic-scale swimming. Theoretical analysis demonstrates that the high-dimensional multi-segmented/legged dynamics can be simplified to a centralized low-dimensional model, which reveals an effective Resistive Force Theory with an acquired viscous drag anisotropy. We extend our low-dimensional, geometric analysis to illustrate how body undulation can aid performance in non-flat obstacle-rich terrains and also use the scheme to quantitatively model how body undulation affects performance of biological centipede locomotion (the desert centipede S. polymorpha) moving at relatively high speeds (~0.5 body lengths/sec). Our results could facilitate control of multilegged robots in complex terradynamic scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源