论文标题

重新归一化组在高斯固定点之间流动

Renormalization Group flows between Gaussian Fixed Points

论文作者

Buccio, Diego, Percacci, Roberto

论文摘要

标量理论可以具有许多高斯(自由)固定点,与表格$ ϕ \,\ box^kϕ $相对应。我们使用非扰动RG来研究此类固定点之间的流量示例。我们表明,异常维度以某种方式连续变化,以使场在端点上具有相应自由理论的正确维度。这些模型表现出各种病理,但仍然有趣地是在红外线和紫外线中渐近释放理论的例子。此外,它们说明了一个分化的耦合实际上可以与自由理论相对应的事实。

A scalar theory can have many Gaussian (free) fixed points, corresponding to Lagrangians of the form $ϕ\,\Box^kϕ$. We use the non-perturbative RG to study examples of flows between such fixed points. We show that the anomalous dimension changes continuously in such a way that at the endpoints the fields have the correct dimensions of the respective free theories. These models exhibit various pathologies, but are nonetheless interesting as examples of theories that are asymptotically free both in the infrared and in the ultraviolet. Furthermore, they illustrate the fact that a diverging coupling can actually correspond to a free theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源