论文标题
MQRETNN:多野体时间序列预测,并取回
MQRetNN: Multi-Horizon Time Series Forecasting with Retrieval Augmentation
论文作者
论文摘要
多想要的概率概率时间序列预测对诸如需求预测等现实世界任务具有广泛的适用性。神经时间序列的最新工作预测主要关注SEQ2SEQ架构的使用。例如,MQtransFormer(MQCNN的改进)显示了概率需求预测中的最新性能。在本文中,我们考虑通过添加跨境注意机制以及检索机制来选择要参加哪些实体,从而提高模型性能。我们演示了我们的新神经架构MQRETNN如何利用整个人群的基线模型的编码环境来提高预测准确性。使用MQCNN作为基线模型(由于计算限制,我们不使用MQTRANSFORMER),我们首先在较小的需求预测数据集上表明,通过添加每个实体在所有其他人群中都参与人群中的其他实体,可以通过添加交叉实体注意机制来提高测试损失约3%。然后,我们通过提出的检索方法评估模型 - 作为大规模需求预测应用,用超过200万种产品的大规模需求预测应用,并观察到MQCNN基线的绩效增长约1%。
Multi-horizon probabilistic time series forecasting has wide applicability to real-world tasks such as demand forecasting. Recent work in neural time-series forecasting mainly focus on the use of Seq2Seq architectures. For example, MQTransformer - an improvement of MQCNN - has shown the state-of-the-art performance in probabilistic demand forecasting. In this paper, we consider incorporating cross-entity information to enhance model performance by adding a cross-entity attention mechanism along with a retrieval mechanism to select which entities to attend over. We demonstrate how our new neural architecture, MQRetNN, leverages the encoded contexts from a pretrained baseline model on the entire population to improve forecasting accuracy. Using MQCNN as the baseline model (due to computational constraints, we do not use MQTransformer), we first show on a small demand forecasting dataset that it is possible to achieve ~3% improvement in test loss by adding a cross-entity attention mechanism where each entity attends to all others in the population. We then evaluate the model with our proposed retrieval methods - as a means of approximating an attention over a large population - on a large-scale demand forecasting application with over 2 million products and observe ~1% performance gain over the MQCNN baseline.