论文标题
旋转操作员,贝尔非局部性和tsirelson结合了量子重力诱导的最小量子力学
Spin operator, Bell nonlocality and Tsirelson bound in quantum-gravity induced minimal-length quantum mechanics
论文作者
论文摘要
量子重力的不同方法在预测最小长度的存在方面会融合。这就提出了关于空间分辨率的内在限制以及如何影响与内部自由度相关的量子机械可观察物的基本问题。我们通过表明旋转操作员在配备最小长度的量子力学中获得了动量依赖的贡献,从而回答了这个问题。除其他后果外,这种修饰会诱导一种比普通量子力学中产生的量子非局部性形式强。特别是,我们表明,违反贝尔不等式的行为可以超过普通量子力学中允许的最大值,即所谓的tsirelson结合,由动量操作员的正值函数。我们基于中子干涉法和量子上下文性介绍了可能的实验设置,并提供了有关实际实验室实施所需的物理参数值的初步估计。
Different approaches to quantum gravity converge in predicting the existence of a minimal scale of length. This raises the fundamental question as to whether and how an intrinsic limit to spatial resolution can affect quantum mechanical observables associated to internal degrees of freedom. We answer this question in general terms by showing that the spin operator acquires a momentum-dependent contribution in quantum mechanics equipped with a minimal length. Among other consequences, this modification induces a form of quantum nonlocality stronger than the one arising in ordinary quantum mechanics. In particular, we show that violations of the Bell inequality can exceed the maximum value allowed in ordinary quantum mechanics, the so-called Tsirelson bound, by a positive-valued function of the momentum operator. We introduce possible experimental settings based on neutron interferometry and quantum contextuality, and we provide preliminary estimates on the values of the physical parameters needed for actual laboratory implementations.