论文标题
fe $ _3 $ gete $ _2 $的当前对磁化的当前控制与广场氮相显微镜
Imaging current control of magnetization in Fe$_3$GeTe$_2$ with a widefield nitrogen-vacancy microscope
论文作者
论文摘要
范德华(Van der Waals)(VDW)磁铁吸引了候选人,以实现利用当前磁化控制的自旋设备(例如,开关或域壁运动),但到目前为止,实验性演示却很少,部分原因是与这些系统中的磁化化相关的挑战。宽场氮呈现(NV)显微镜可以在整个VDW薄片上快速,定量的磁成像,非常适合捕获由于电流而引起的微磁性结构的变化。在这里,我们使用广场NV显微镜研究VDW Ferromagnet Fe $ _3 $ gete $ _2 $(FGT)的薄片($ \ sim10 $ nm)中当前注射的效果。我们首先观察到电流减少在单个域水平上的矫正力,其中FGT中的电流注入会导致局部逆转磁化所需的磁场大幅度降低。然后,我们探讨了电流诱导的域壁运动的可能性,并为在相对较低的电流密度下提供了这种运动的初步证据,这表明我们设备中存在强电流诱导的扭矩。我们的结果说明了广场NV显微镜在VDW磁体中成像旋转现象的适用性,突出了在没有相邻导体的辅助的情况下通过直流注入有效控制磁化的可能性,并激励对FGT和其他VDW磁体的电流效应进行进一步研究。
Van der Waals (vdW) magnets are appealing candidates for realising spintronic devices that exploit current control of magnetization (e.g. switching or domain wall motion), but so far experimental demonstrations have been sparse, in part because of challenges associated with imaging the magnetization in these systems. Widefield nitrogen-vacancy (NV) microscopy allows rapid, quantitative magnetic imaging across entire vdW flakes, ideal for capturing changes in the micromagnetic structure due to an electric current. Here we use a widefield NV microscope to study the effect of current injection in thin flakes ($\sim10$nm) of the vdW ferromagnet Fe$_3$GeTe$_2$ (FGT). We first observe current-reduced coercivity on an individual domain level, where current injection in FGT causes substantial reduction in the magnetic field required to locally reverse the magnetisation. We then explore the possibility of current-induced domain-wall motion, and provide preliminary evidence for such a motion under relatively low current densities, suggesting the existence of strong current-induced torques in our devices. Our results illustrate the applicability of widefield NV microscopy to imaging spintronic phenomena in vdW magnets, highlight the possibility of efficient magnetization control by direct current injection without assistance from an adjacent conductor, and motivate further investigations of the effect of currents in FGT and other vdW magnets.