论文标题
关于3D对象探测器的鲁棒性
On the Robustness of 3D Object Detectors
论文作者
论文摘要
近年来,由于3D数据收集和深度学习技术的进步,在点云上的3D对象检测取得了重大进展。然而,3D场景表现出很多变化,并且容易出现传感器的不准确性以及预处理过程中的信息丢失。因此,对于针对这些变化的设计技术至关重要。这需要详细的分析和理解此类变化的影响。这项工作旨在分析和基准基于流行的基于点的3D对象检测器,以针对几个数据损坏。据我们所知,我们是第一个研究基于点的3D对象检测器的鲁棒性的人。为此,我们设计和评估涉及数据添加,减少和更改的损坏。我们进一步研究了不同模块对局部和全球变化的鲁棒性。我们的实验结果揭示了一些有趣的发现。例如,与在点级别上使用变压器相比,我们表明在补丁或对象级别集成变压器的方法会增加鲁棒性。
In recent years, significant progress has been achieved for 3D object detection on point clouds thanks to the advances in 3D data collection and deep learning techniques. Nevertheless, 3D scenes exhibit a lot of variations and are prone to sensor inaccuracies as well as information loss during pre-processing. Thus, it is crucial to design techniques that are robust against these variations. This requires a detailed analysis and understanding of the effect of such variations. This work aims to analyze and benchmark popular point-based 3D object detectors against several data corruptions. To the best of our knowledge, we are the first to investigate the robustness of point-based 3D object detectors. To this end, we design and evaluate corruptions that involve data addition, reduction, and alteration. We further study the robustness of different modules against local and global variations. Our experimental results reveal several intriguing findings. For instance, we show that methods that integrate Transformers at a patch or object level lead to increased robustness, compared to using Transformers at the point level.