论文标题

无诱捕性北极bose-Einstein冷凝水的稳定窗口

Stability Window of Trapless Polariton Bose-Einstein condensates

论文作者

Sabari, S., Kumar, R. Kishor, Radha, R., Muruganandam, P.

论文摘要

从理论上讲,我们探讨了稳定无诱捕的极性bose-Einstein冷凝物(PBEC)的可能性。利用变异方法,我们解决了相关的非线性,复杂的Gross-Pitaevskii(CGP)方程,并得出了冷凝水振幅和宽度的运动方程。经过普通微分方程描述的这些变分结果被重写以执行线性稳定性分析,以在排斥域中生成稳定窗口。然后,通过数值模拟通过第四阶runge-kutta方法来求解一组通过变异方法获得的耦合非线性普通微分方程,该方法通过拆分式曲柄nicholson方法进一步支持,从而为稳定的PBEC提供了平台。特别是,我们在$g_1-γ_{eff} $空间中生成一个包含系统参数的窗口,在该空间中,系统可以在其中允许稳定的冷凝物。结果的重点是,一个人在冷凝物的实时演变中观察到与多组分BEC非常相似的冷凝物的实时演变,并且可以通过操纵线性和非线性损失/增益项来改变其周期性。对于排斥冷凝水,人们注意到密度的拉伸。

We theoretically explore the possibility of stabilizing the trapless polariton Bose-Einstein condensates (pBECs). Exploiting the variational method, we solve the associated nonlinear, complex Gross-Pitaevskii (cGP) equation and derive the equation of motion for the amplitude and width of the condensate. These variational results described by ordinary differential equations are rewritten to perform a linear stability analysis to generate a stability window in the repulsive domain. A set of coupled nonlinear ordinary differential equations obtained through variational approach are then solved by numerical simulations through the fourth order Runge-Kutta method, which are further supported by split-step Crank-Nicholson method, thereby setting the platform for stable pBECs. In particular, we generate a window containing system parameters in the $g_1-γ_{eff}$ space within which the system can admit stable condensates. The highlight of the results is that one observes beating effects in the real time evolution of the condensates with attractive interactions much similar to multicomponent BECs, and their periodicity can be varied by manipulating linear and nonlinear loss/gain terms. For repulsive condensates, one notices the stretching of the density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源