论文标题
铜的旋转单线和准颗粒激发超导体中的激发
Spin singlet and quasiparticles excitations in cuprate superconductors
论文作者
论文摘要
我们逐步逐步进行了从BI $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _ {2} $ o $ $ $ _ {8+δ} $(bi-2212)$(bi-2212)使用电子拉曼分散的clastrate canterrappy的过渡到Bi $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _ {2} $(bi-2212)使用电子拉曼散布的cuplate。这是通过跟踪自旋单线激发的掺杂依赖性来实现的,源自AF Mott绝缘子,正常状态准粒子激发与移动荷载载流子和与SC间隙相关的Bogoliubov Quasiparticles相关。我们表明,在此转变过程中发展的伪gap阶段的特征可以解释为通过随着温度下降的抗铁磁相关性的增强来阻断电荷载体。我们发现,伪gap的能量尺度,$Δ_ {\ textrm {pg}}}(p)$,紧随旋转单元激励之一,$δ_ {\ textrm {sse}}}(p)$,带有兴奋剂$ p $。当伪群倒塌时,准粒子的寿命会随着掺杂而大大增加。我们揭示了SC间隙的最大振幅,$δ{\ textrm {sc}}^{\ textrm {max}} $和SC过渡温度\ tc链接在$δ_{sctrm {sc}}}}^propty等范围内链接。 δ_ {\ textrm {sse}}(p)\,t_c(p)$。这种关系表明,AF相关性在超导性机理中起关键作用。
We followed step by step the transition from an antiferromagnetic (AF) Mott insulator to a superconducting (SC) metal in the Bi$_2$Sr$_2$CaCu$_{2}$O$_{8+δ}$ (Bi-2212) cuprate using the electronic Raman scattering spectroscopy. This was achieved by tracking the doping dependence of the spin singlet excitation originate from the AF Mott insulator, the normal state quasiparticles excitation related to the mobile charge carriers and the Bogoliubov quasiparticles related to the SC gap. We show that the signature of the pseudogap phase which develops during this transition, can be interpreted as the blocking of charge carriers by the enhancement of the antiferromagnetic correlations as the temperature drops. We find that the energy scale of the pseudogap, $Δ_{\textrm{pg}}(p)$, closely follows the one of the spin singlet excitation, $Δ_{\textrm{sse}}(p)$, with doping $p$. The quasiparticles lifetime considerably increases with doping when the pseudogap collapses. We reveal that the maximum amplitude of the SC gap, $Δ_{\textrm{sc}}^{\textrm{max}}$ and the SC transition temperature \Tc are linked in an extended range of doping such as $Δ_{\textrm{sc}}^{\textrm{max}}(p) \propto Δ_{\textrm{sse}}(p)\, T_c(p)$. This relation suggests that the AF correlations play a key role in the mechanism of superconductivity.