论文标题

资源约束的移动机器人的模型压缩

Model Compression for Resource-Constrained Mobile Robots

论文作者

Souroulla, Timotheos, Hata, Alberto, Terra, Ahmad, Özkahraman, Özer, Inam, Rafia

论文摘要

在过去的十年中,需要执行复杂机器学习模型的计算资源的移动机器人数量一直在增加。通常,这些机器人依赖于在无线通信上访问的边缘基础架构来执行重型计算复杂任务。但是,边缘可能会变得不可用,因此,义务是在机器人上执行任务。这项工作着重于通过减少预训练的计算机视觉模型的复杂性和参数总数来执行机器人上的任务。这是通过使用模型压缩技术(例如修剪和知识蒸馏)来实现的。这些压缩技术具有强大的理论和实用基础,但是在文献中并未广泛探讨它们的综合用法。因此,这项工作尤其着重于研究结合这两种压缩技术的影响。这项工作的结果表明,可以删除计算机视觉模型参数总数的90%,而不会大幅度降低该模型的准确性。

The number of mobile robots with constrained computing resources that need to execute complex machine learning models has been increasing during the past decade. Commonly, these robots rely on edge infrastructure accessible over wireless communication to execute heavy computational complex tasks. However, the edge might become unavailable and, consequently, oblige the execution of the tasks on the robot. This work focuses on making it possible to execute the tasks on the robots by reducing the complexity and the total number of parameters of pre-trained computer vision models. This is achieved by using model compression techniques such as Pruning and Knowledge Distillation. These compression techniques have strong theoretical and practical foundations, but their combined usage has not been widely explored in the literature. Therefore, this work especially focuses on investigating the effects of combining these two compression techniques. The results of this work reveal that up to 90% of the total number of parameters of a computer vision model can be removed without any considerable reduction in the model's accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源