论文标题
黑洞和引力激体的Kaehler几何形状
Kaehler geometry of black holes and gravitational instantons
论文作者
论文摘要
我们获得了一个封闭式的公式,该公式的巨大四维Lorentzian或Euclidean共形的“ Kaehler”几何形状(包括Plebanski-Demianski类)以及各种引力instantons,例如Fubini-study和Chen-Teo。我们表明,施瓦茨柴尔德(Schwarzschild)和克尔(Kerr)的凯勒(Kaehler)潜力与纽曼·贾尼斯(Newman-Janis)的转变有关。我们的方法还表明,包括Kerr-Sen Spacetime在内的一类超级实力黑洞是Hermitian(但不是保形的Kaehler)。我们最终表明,复杂结构的可合价条件自然导致了(非线性)Weyl双拷贝,并给出了这种关系的新真空和非现象示例。
We obtain a closed formula for the Kaehler potential of a broad class of four-dimensional Lorentzian or Euclidean conformal "Kaehler" geometries, including the Plebanski-Demianski class and various gravitational instantons such as Fubini-Study and Chen-Teo. We show that the Kaehler potentials of Schwarzschild and Kerr are related by a Newman-Janis shift. Our method also shows that a class of supergravity black holes, including the Kerr-Sen spacetime, is Hermitian (but not conformal Kaehler). We finally show that the integrability conditions of complex structures lead naturally to the (non-linear) Weyl double copy, and we give new vacuum and non-vacuum examples of this relation.