论文标题
使用INLA-SPDE方法在两阶段时空模型中的数据融合
Data Fusion in a Two-stage Spatio-Temporal Model using the INLA-SPDE Approach
论文作者
论文摘要
本文提出了针对空间未对准场景的两阶段估计方法,该方法是由将污染物暴露和健康结果联系起来的流行病学问题所激发的。我们使用集成的嵌套拉普拉斯近似方法来估计两个阶段时空模型的参数。第一阶段对曝光进行了建模,而第二阶段将健康结果与暴露联系起来。第一阶段是基于贝叶斯融合模型,该模型假定地统计学监测数据和高分辨率数据(例如卫星数据)的常见潜在领域。第二阶段使用估计的潜在场的空间平均值以及其他空间和时间随机效应拟合GLMM。通过从潜在场的后验预测分布反复模拟第一阶段的不确定性。进行了一项仿真研究,以评估数据的稀疏性对监视器的稀疏性,时间点的次数,以及先验的规范,从偏见,RMS和参数的覆盖范围概率和块级别的暴露估算方面。结果表明,这些参数通常是正确估计的,但是很难估计潜在的场参数。该方法在估计区块级暴露以及暴露对健康结果的影响方面非常有效,这是空间流行病学家和健康政策制定者感兴趣的主要参数,即使使用了非信息性先生。
This paper proposes a two-stage estimation approach for a spatial misalignment scenario that is motivated by the epidemiological problem of linking pollutant exposures and health outcomes. We use the integrated nested Laplace approximation method to estimate the parameters of a two-stage spatio-temporal model; the first stage models the exposures while the second stage links the health outcomes to exposures. The first stage is based on the Bayesian melding model, which assumes a common latent field for the geostatistical monitors data and a high-resolution data such as satellite data. The second stage fits a GLMM using the spatial averages of the estimated latent field, and additional spatial and temporal random effects. Uncertainty from the first stage is accounted for by simulating repeatedly from the posterior predictive distribution of the latent field. A simulation study was carried out to assess the impact of the sparsity of the data on the monitors, number of time points, and the specification of the priors in terms of the biases, RMSEs, and coverage probabilities of the parameters and the block-level exposure estimates. The results show that the parameters are generally estimated correctly but there is difficulty in estimating the latent field parameters. The method works very well in estimating block-level exposures and the effect of exposures on the health outcomes, which is the primary parameter of interest for spatial epidemiologists and health policy makers, even with the use of non-informative priors.