论文标题

通过概括来自源域的基本视觉因素来克服目标域中的快捷方式学习

Overcoming Shortcut Learning in a Target Domain by Generalizing Basic Visual Factors from a Source Domain

论文作者

Saranrittichai, Piyapat, Mummadi, Chaithanya Kumar, Blaiotta, Claudia, Munoz, Mauricio, Fischer, Volker

论文摘要

当深层神经网络过于依赖培训数据集中的虚假相关性以解决下游任务时,就会发生快捷学习。先前的工作表明,这如何损害深度学习模型的组成概括能力。为了解决这个问题,我们提出了一种新的方法,以减轻不受控制的目标域中的快捷方式学习。我们的方法通过附加数据集(源域)扩展了训练集,该数据集(源域)是专门设计的,旨在促进学习基本视觉因素的独立表示。我们对合成目标域进行了基准,我们明确控制了快捷机会以及现实世界中的目标域。此外,我们分析了源域不同规格和网络体系结构对组成概括的影响。我们的主要发现是,从源域中利用数据是减轻快捷方式学习的有效方法。通过促进学习表示的不同因素的独立性,网络可以学会仅考虑预测因素并忽略推断期间潜在的快捷因素。

Shortcut learning occurs when a deep neural network overly relies on spurious correlations in the training dataset in order to solve downstream tasks. Prior works have shown how this impairs the compositional generalization capability of deep learning models. To address this problem, we propose a novel approach to mitigate shortcut learning in uncontrolled target domains. Our approach extends the training set with an additional dataset (the source domain), which is specifically designed to facilitate learning independent representations of basic visual factors. We benchmark our idea on synthetic target domains where we explicitly control shortcut opportunities as well as real-world target domains. Furthermore, we analyze the effect of different specifications of the source domain and the network architecture on compositional generalization. Our main finding is that leveraging data from a source domain is an effective way to mitigate shortcut learning. By promoting independence across different factors of variation in the learned representations, networks can learn to consider only predictive factors and ignore potential shortcut factors during inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源