论文标题

计算树的分解,独立数少

Computing Tree Decompositions with Small Independence Number

论文作者

Dallard, Clément, Fomin, Fedor V., Golovach, Petr A., Korhonen, Tuukka, Milanič, Martin

论文摘要

树木分解的独立数是其袋子引起的子图的独立数的最大数量。图形的树独立数是其树分解的最小独立性数。如果输入n-vertex图与独立数字k的树分解一起给出,则可以在时间n^{o(k)}时在时间n^{o(k)}时求解几个NP-硬形图问题。在[Soda 2018]中,Yolov给出了一种算法,在n-vertex graph g和一个整数k中,随着时间的推移,n^{o(k^3)}构建了g的树的树分解,其独立数为o(k^3),或者正确地报告了g的树木独立数大于k。 在本文中,我们首先给出了一种算法,用于以更好的近似比和运行时间计算树独立的数字,然后证明我们的算法在某种意义上是最好的。更确切地说,我们的算法在时间2^{o(k^2)} n^{o(k)}中运行,并且要么输出G的树的树分解,其独立数量最多为$ 8K $,或者确定G的树独立数量G大于k。这意味着2^{o(k^2)} n^{o(k)} - 各种问题的时间算法,例如最大重量独立集,由树独立数字k参数化,而无需分解作为输入。假设Gap-Eth,对于树独立数的任何近似算法,运行时间中的n^{ω(k)}因子是不可避免的。 我们的第二个结果是,树独立数的确切计算是para-np-hard:我们表明,对于每个常数的k \ ge 4,决定给定图是否最多具有k的k \ ge 4。

The independence number of a tree decomposition is the maximum of the independence numbers of the subgraphs induced by its bags. The tree-independence number of a graph is the minimum independence number of a tree decomposition of it. Several NP-hard graph problems, like maximum weight independent set, can be solved in time n^{O(k)} if the input n-vertex graph is given together with a tree decomposition of independence number k. Yolov, in [SODA 2018], gave an algorithm that, given an n-vertex graph G and an integer k, in time n^{O(k^3)} either constructs a tree decomposition of G whose independence number is O(k^3) or correctly reports that the tree-independence number of G is larger than k. In this paper, we first give an algorithm for computing the tree-independence number with a better approximation ratio and running time and then prove that our algorithm is, in some sense, the best one can hope for. More precisely, our algorithm runs in time 2^{O(k^2)} n^{O(k)} and either outputs a tree decomposition of G with independence number at most $8k$, or determines that the tree-independence number of G is larger than k. This implies 2^{O(k^2)} n^{O(k)}-time algorithms for various problems, like maximum weight independent set, parameterized by the tree-independence number k without needing the decomposition as an input. Assuming Gap-ETH, an n^{Ω(k)} factor in the running time is unavoidable for any approximation algorithm for the tree-independence number. Our second result is that the exact computation of the tree-independence number is para-NP-hard: We show that for every constant k \ge 4 it is NP-hard to decide if a given graph has the tree-independence number at most k.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源