论文标题

改进了非局部运算符的重新规范化方案

Improved renormalization scheme for nonlocal operators

论文作者

Constantinou, Martha, Panagopoulos, Haralambos

论文摘要

在本文中,我们提出了改进的RI-Type处方,适合于规范非本地运算符的非扰动重新归一化。在此处方中,通过减去不需要的有限晶格间距($ a $)效应,在晶格扰动理论中计算出的有限晶格间距($ a $)来改善非扰动顶点功能。该方法具有多功能性,可以应用于多种速度和gluon动作以及非局部操作员的类型。也可以容纳操作员混合的存在。 与标准RI的处方相比,该变体可以作为补充有限的重新归如此,其系数带来了$ a $ a $ a的更高级别的校正;因此,它与标准ri'作为$ a \ to 0 $一致,但是它可以使我们能够使我们更加顺畅,更受控的外推到连续限制。 在此概念验证计算中,我们关注的是包含直线威尔逊线的非本地费米恩双线性操作员。在数值实施中,我们使用Wilson/Cllover Fermions和Iwasaki改善了振荡。有限的$ a $项在晶格摄动理论中计算为一环级别,并使用与非扰动顶点函数相同的操作,以$ a $中的所有订单计算为$ a $。我们发现该方法导致威尔逊线长度的小和中间值指示的扰动区域的显着改善。这会导致该区域中重新归一化函数的鲁棒提取。 我们还将上述方法应用于具有粗壮链接的运营商。我们展示了如何对任何数量的涂抹迭代执行扰动校正,并评估其对功率发散重新归一化系数的影响。

In this paper we present an improved RI-type prescription appropriate for the non-perturbative renormalization of gauge invariant nonlocal operators. In this prescription, the non-perturbative vertex function is improved by subtracting unwanted finite lattice spacing ($a$) effects, calculated in lattice perturbation theory. The method is versatile and can be applied to a wide range of fermion and gluon actions, as well as types of nonlocal operators. The presence of operator mixing can also be accommodated. Compared to the standard RI' prescription, this variant can be recast as a supplementary finite renormalization, whose coefficients bring about corrections of higher order in $a$; consequently, it coincides with standard RI' as $a\to 0$, however it can afford us a smoother and more controlled extrapolation to the continuum limit. In this proof-of-concept calculation we focus on nonlocal fermion bilinear operators containing a straight Wilson line. In the numerical implementation we use Wilson/clover fermions and Iwasaki improved gluons. The finite-$a$ terms were calculated to one-loop level in lattice perturbation theory, and to all orders in $a$, using the same action as the non-perturbative vertex functions. We find that the method leads to significant improvement in the perturbative region indicated by small and intermediate values of the length of the Wilson line. This results in a robust extraction of the renormalization functions in that region. We have also applied the above method to operators with stout-smeared links. We show how to perform the perturbative correction for any number of smearing iterations, and evaluate its effect on the power divergent renormalization coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源