论文标题

确切的匹配:正确的奇偶校验和fpt通过独立编号参数

Exact Matching: Correct Parity and FPT Parameterized by Independence Number

论文作者

Maalouly}, Nicolas {El, Steiner, Raphael, Wulf, Lasse

论文摘要

给定一个整数$ k $和一个图形,每个边缘都颜色为红色或蓝色,确切匹配问题的目标是找到与恰好$ k $边缘的属性的完美匹配。 Mulmuley等人描述了Papadimitriou和Yannakakis(JACM 1982)引入问题后不久,一种随机的多项式时间算法解决了该问题。 (Combinatorica 1987)。尽管付出了很多努力,但今天仍然不知道确定性多项式算法是否存在。这使得确切的匹配问题成为测试复杂性类P和RP相等的流行猜想的重要候选者。在最近的一篇文章(MFCS 2022)中,通过证明对界限两分的独立数的二分图(一种多项式时间算法存在)来取得了进展。就参数化的复杂度而言,该算法是由两部分独立性编号参数化的XP-Algorithm。在本文中,我们介绍了新型算法技术,使我们能够获得FPT-Algorithm。如果输入是一般图,我们表明一个人至少可以计算一个完美的匹配$ m $,该$ m $在多项式时间内具有正确数量的红色边缘Modulo 2。这是由我们的最后一个结果激发的,在这种结果中,我们证明了一般图的FPT算法,该算法是由独立编号进行参数化的一般图表,它减少了在多项式时间中查找的问题,即完美匹配的$ m $,最多$ k $ red red edges和正确数量的红色边缘数量modulo 2。

Given an integer $k$ and a graph where every edge is colored either red or blue, the goal of the exact matching problem is to find a perfect matching with the property that exactly $k$ of its edges are red. Soon after Papadimitriou and Yannakakis (JACM 1982) introduced the problem, a randomized polynomial-time algorithm solving the problem was described by Mulmuley et al. (Combinatorica 1987). Despite a lot of effort, it is still not known today whether a deterministic polynomial-time algorithm exists. This makes the exact matching problem an important candidate to test the popular conjecture that the complexity classes P and RP are equal. In a recent article (MFCS 2022), progress was made towards this goal by showing that for bipartite graphs of bounded bipartite independence number, a polynomial time algorithm exists. In terms of parameterized complexity, this algorithm was an XP-algorithm parameterized by the bipartite independence number. In this article, we introduce novel algorithmic techniques that allow us to obtain an FPT-algorithm. If the input is a general graph we show that one can at least compute a perfect matching $M$ which has the correct number of red edges modulo 2, in polynomial time. This is motivated by our last result, in which we prove that an FPT algorithm for general graphs, parameterized by the independence number, reduces to the problem of finding in polynomial time a perfect matching $M$ with at most $k$ red edges and the correct number of red edges modulo 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源