论文标题

正方形中包含的自我避免步行

Self-avoiding walks contained within a square

论文作者

Guttmann, Anthony J, Jensen, Iwan, Owczarek, Aleksander L

论文摘要

我们研究了$ l \ times l $ square内的自我避免步行,其端点可以位于广场的边界内部或范围内。我们证明,这样的步行渐近地行走了,因为步行穿过一个广场(WCA),是那些步行,其端点位于广场的东南和西北角。 我们提供数值数据,列举所有此类步行,并分析系数的序列,以估计渐近行为。我们还研究了这些步道的子集,这些步行的子集必须在正方形的所有四个边界上至少包含一个边缘。我们提供了令人信服的证据,表明这两类步行的发展相同。 From our analysis we conjecture that the number of such walks $C_L$, for both problems, behaves as $$ C_L \sim λ^{L^2+bL+c}\cdot L^g,$$ where $λ= 1.7445498 \pm 0.0000012,$ $b=-0.04354 \pm 0.0005,$ $c=-1.35 \pm 0.45,$ and $ g = 3.9 \ pm 0.1。$ 最后,我们还研究了避免自我避免多边形的等效问题,也称为正方形网格中的循环。循环的渐近行为具有与步行相同的形式,但具有不同的参数$ c $和$ g $的值。我们的数值分析表明,$λ$和$ b $具有与WCA相同的值,而$ c = 1.776 \ pm 0.002 $,而$ g = -0.500 \ pm 0.005 $,因此可能等于$ - \ frac12 $。

We have studied self-avoiding walks contained within an $L \times L$ square whose end-points can lie anywhere within, or on, the boundaries of the square. We prove that such walks behave, asymptotically, as walks crossing a square (WCAS), being those walks whose end-points lie at the south-east and north-west corners of the square. We provide numerical data, enumerating all such walks, and analyse the sequence of coefficients in order to estimate the asymptotic behaviour. We also studied a subset of these walks, those that must contain at least one edge on all four boundaries of the square. We provide compelling evidence that these two classes of walks grow identically. From our analysis we conjecture that the number of such walks $C_L$, for both problems, behaves as $$ C_L \sim λ^{L^2+bL+c}\cdot L^g,$$ where $λ= 1.7445498 \pm 0.0000012,$ $b=-0.04354 \pm 0.0005,$ $c=-1.35 \pm 0.45,$ and $g=3.9 \pm 0.1.$ Finally, we also studied the equivalent problem for self-avoiding polygons, also known as cycles in a square grid. The asymptotic behaviour of cycles has the same form as walks, but with different values of the parameters $c$, and $g$. Our numerical analysis shows that $λ$ and $b$ have the same values as for WCAS and that $c=1.776 \pm 0.002$ while $g=-0.500\pm 0.005$ and hence probably equals $-\frac12$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源