论文标题
使用POMDP和生成模型插入机器人技术播放任务级别的自主权
Towards Plug'n Play Task-Level Autonomy for Robotics Using POMDPs and Generative Models
论文作者
论文摘要
为了使机器人能够实现高级目标,工程师通常会编写应用现有专业技能的脚本,例如导航,对象检测和操纵以实现这些目标。编写好的脚本是具有挑战性的,因为它们必须巧妙地平衡物理机器人的动作和传感器的固有随机性以及它拥有的有限信息。原则上,AI计划可用于应对这一挑战并自动产生良好的行为策略。但这需要通过三个障碍。首先,AI必须了解每个技能对世界的影响。其次,我们必须弥合了解技能所做的更抽象级别与其代码中使用的低级状态变量之间的差距。第三,将所有组件绑在一起需要大量的集成工作。我们描述了一种将机器人技能集成到工作的自主机器人控制器中的方法,该方法将其计划安排以完成指定任务并具有四个关键优势。 1)使用概率编程语言中的想法,我们的生成技能文档语言(GSDL)使代码文档更简单,紧凑,更具表现力。 2)表达抽象映射(AM)桥接了低级机器人代码和抽象AI计划模型之间的差距。 3)控制器可以使用任何正确记录的技能,而无需任何额外的编程工作,提供了插头的经验。 4)POMDP求解器计划执行技能,同时适当地平衡了部分可观察性,随机行为和嘈杂的传感。
To enable robots to achieve high level objectives, engineers typically write scripts that apply existing specialized skills, such as navigation, object detection and manipulation to achieve these goals. Writing good scripts is challenging since they must intelligently balance the inherent stochasticity of a physical robot's actions and sensors, and the limited information it has. In principle, AI planning can be used to address this challenge and generate good behavior policies automatically. But this requires passing three hurdles. First, the AI must understand each skill's impact on the world. Second, we must bridge the gap between the more abstract level at which we understand what a skill does and the low-level state variables used within its code. Third, much integration effort is required to tie together all components. We describe an approach for integrating robot skills into a working autonomous robot controller that schedules its skills to achieve a specified task and carries four key advantages. 1) Our Generative Skill Documentation Language (GSDL) makes code documentation simpler, compact, and more expressive using ideas from probabilistic programming languages. 2) An expressive abstraction mapping (AM) bridges the gap between low-level robot code and the abstract AI planning model. 3) Any properly documented skill can be used by the controller without any additional programming effort, providing a Plug'n Play experience. 4) A POMDP solver schedules skill execution while properly balancing partial observability, stochastic behavior, and noisy sensing.