论文标题
使用数据扩展改善数据驱动的逆文本归一化
Improving Data Driven Inverse Text Normalization using Data Augmentation
论文作者
论文摘要
反文本归一化(ITN)用于将自动语音识别(ASR)系统的口语输出转换为书面形式。传统手工制作的ITN规则可以复杂地转录和维护。同时,神经建模方法需要与ASR系统(内域数据)相同或相似的域中的优质大规模口语写作对示例。这两种方法都需要昂贵且复杂的注释。在本文中,我们提出了一种数据增强技术,该技术可有效地从室外文本数据中产生丰富的口头写入数字对,并以最少的人类注释。我们从经验上证明,使用我们的数据增强技术训练的ITN模型始终超过ITN模型,该模型仅使用14.44%的总体准确性在所有数字表面(例如Cardinal,货币和分数)上仅使用内域数据进行训练。
Inverse text normalization (ITN) is used to convert the spoken form output of an automatic speech recognition (ASR) system to a written form. Traditional handcrafted ITN rules can be complex to transcribe and maintain. Meanwhile neural modeling approaches require quality large-scale spoken-written pair examples in the same or similar domain as the ASR system (in-domain data), to train. Both these approaches require costly and complex annotations. In this paper, we present a data augmentation technique that effectively generates rich spoken-written numeric pairs from out-of-domain textual data with minimal human annotation. We empirically demonstrate that ITN model trained using our data augmentation technique consistently outperform ITN model trained using only in-domain data across all numeric surfaces like cardinal, currency, and fraction, by an overall accuracy of 14.44%.