论文标题
弥漫性超新星中微子背景
Diffuse supernova neutrino background
论文作者
论文摘要
中微子是宇宙中第二大普遍的标准模型颗粒。另一方面,它们也是最不可能相互作用的人。连接这两个点表明,当检测到中微子时,它可以泄露有关其来源的独特信息。在已知的中微子来源中,宇宙中的核心折叠超新星对MEV富集最丰富。平均而言,在可观察到的宇宙中每秒发生一次崩溃,并产生$ 10^{58} $中微子。中微子的通量从宇宙中的所有核心折叠超新星到达地球的通量被称为弥漫性超新星中微子背景。在本章中,提出了弥漫性超新星中微子背景的基本预测。这包括讨论来自核心偏离超新星的平均中微子信号,由于过程中形成的残留物而引起的该信号的可变性,以及与确定弥漫性通量的其他天体物理参数相关的不确定性,例如宇宙学的超新星率。此外,报告了当前的实验限制和弥漫性超新星中微子背景的检测观点。
Neutrinos are the second most ubiquitous Standard Model particles in the universe. On the other hand, they are also the ones least likely to interact. Connecting these two points suggests that when a neutrino is detected, it can divulge unique pieces of information about its source. Among the known neutrino sources, core-collapse supernovae in the universe are the most abundant for MeV-energies. On average, a single collapse happens every second in the observable universe and produces $10^{58}$ neutrinos. The flux of neutrinos reaching the Earth from all the core-collapse supernovae in the universe is known as diffuse supernova neutrino background. In this Chapter, the basic prediction for the diffuse supernova neutrino background is presented. This includes a discussion of an average neutrino signal from a core-collapse supernova, variability of that signal due to the remnant formed in the process, and uncertainties connected to the other astrophysical parameters determining the diffuse flux, such as cosmological supernova rate. In addition, the current experimental limits and detection perspectives of diffuse supernova neutrino background are reported.