论文标题

应用贝叶斯推理和确定性各向异性来检索分子结构$ |ψ(\ boldsymbol {r})|^2 $从气相衍射实验中分布

Applying Bayesian Inference and deterministic anisotropy to retrieve the molecular structure $|Ψ(\boldsymbol{R})|^2$ distribution from gas-phase diffraction experiments

论文作者

Hegazy, Kareem, Makhija, Varun, Bucksbaum, Phil, Corbett, Jeff, Cryan, James, Hartmann, Nick, Ilchen, Markus, Jobe, Keith, Li, Renkai, Makasyuk, Igor, Shen, Xiaozhe, Wang, Xijie, Weathersby, Stephen, Yang, Jie, Coffee, Ryan

论文摘要

当前,我们从超快气相衍射中检索分子结构的一般方法在很大程度上依赖于复杂的电子或振动激发态模拟来做出结论性的解释。没有这样的模拟,将这种测量的结构概率分布倒置通常是棘手的。这会产生一个所谓的反问题。在这项工作中,我们开发了一种广泛适用的方法,该方法通过近似分子框架结构$ |ψ(\ boldsymbol {r},t),t)|^2 $分布分布与这些复杂模拟无关。我们检索了两个模拟拉伸的no $ _2 $和测量n $ _2 $ o的振动基态$ |ψ(\ boldsymbol {r})|^2 $。从测量的n $ _2 $ o中,我们可以观察到40个芒果坐标空间从3.75逆埃逆因互惠空间范围和较差的信噪比,这比传统的傅立叶变换方法相比有50倍的改善。在模拟的否$ _2 $中,典型到高信噪比的水平可以预测100--1000x的分辨率改进,低至0.1 Mangstroms。通过直接测量$ |ψ(\ boldsymbol {r})|^2 $的宽度,我们打开了超出当前分析方法以外的测量功能。该方法有效地将气相超快衍射变成了面向发现的技术,以探测难以模拟的探测系统。

Currently, our general approach to retrieving molecular structures from ultrafast gas-phase diffraction heavily relies on complex ab initio electronic or vibrational excited state simulations to make conclusive interpretations. Without such simulations, inverting this measurement for the structural probability distribution is typically intractable. This creates a so-called inverse problem. In this work, we develop a broadly applicable method that addresses this inverse problem by approximating the molecular frame structure $|Ψ(\boldsymbol{R}, t)|^2$ distribution independent of these complex simulations. We retrieve the vibronic ground state $|Ψ(\boldsymbol{R})|^2$ for both simulated stretched NO$_2$ and measured N$_2$O. From measured N$_2$O, we observe 40 mAngstroms coordinate-space resolution from 3.75 inverse Angstroms reciprocal space range and poor signal-to-noise, a 50X improvement over traditional Fourier transform methods. In simulated NO$_2$, typical to high signal-to-noise levels predict 100--1000X resolution improvements, down to 0.1 mAngstroms. By directly measuring the width of $|Ψ(\boldsymbol{R})|^2$, we open ultrafast gas-phase diffraction capabilities to measurements beyond current analysis approaches. This method has the potential to effectively turn gas-phase ultrafast diffraction into a discovery-oriented technique to probe systems that are prohibitively difficult to simulate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源